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1 Knowledge󲪞estions
󰓃e questions in this section are designed to test recall of basic de󰎓nitions and properties. You should
be able to answer them with only a moment’s thought. An answer key is at the end of the section.

󲪞estion 1 (Subspaces). Let U and W be subspaces of a vector space V . Which of the following is
always true?

(a) Both U ∩W and U ∪W are subspaces of V
(b) Only U ∩W is a subspace of V
(c) Only U ∪W is a subspace of V
(d) Neither U ∩W nor U ∪W is a subspace of V .

󲪞estion 2 (Isomorphisms). Wewill write V ∼= W if V andW are isomorphic. Which of the following
is true? Consider all vector spaces as real vector spaces.

(a) Rn ∼= Cn and Rn ∼= Pn(R)
(b) Rn ∼= Cn and Rn ∼= Pn+1(R)
(c) Rn ∼= C2n and Rn ∼= Pn−1(R)
(d) R2n ∼= Cn and Rn+1 ∼= Pn(R)

󲪞estion 3 (Fundamental 󰓃eorem of Algebra). Let p ∈ P(R) be a polynomial with real coe󰎏cients.
Which of the following is not a possibility for the number of complex roots of p?

(a) 0 (b) 1 (c) 2 (d) 4

󲪞estion 4 (Self-adjoint operators). Suppose T ∈ L(C2) has matrix (with respect to the standard basis)

given by
󰀗
2 k
3 7

󰀘
. 󰓃en T is self-adjoint for which value(s) of k?

󲪞estion 5 (Matrices). Suppose a linear transformation T ∈ L(V,W ) has a matrix (with respect to
some basis) that has a column of zeros. Which of the following is always true?

(a) T is neither injective nor surjective
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(b) T is not injective
(c) T is not surjective
(d) T is both injective and surjective

󲪞estion 6 (Duals). Assume V andW are 󰎓nite-dimensional vector spaces. Let T ∈ L(V,W ) and take
U to be a subspace of V . Which of the following is false?

(a) If T is surjective, then T ′ = 0

(b) 󰓃e dual space V ′ is a vector space
(c) dimV = dimV ′

(d) dimU + dimU◦ = dimV

󲪞estion 7 (󲪞otients). Let V be a 󰎓nite-dimensional vector space and U a subspace of U . What is
the dimension of V/U?

󲪞estion 8 (Inner products). Consider the map P(R)× P(R) → R given by

(p, q) =

󰁝 ∞

0

p(x)q(x)e−x dx

for any p, q ∈ P(R). Is this map an inner product? If not, which property/properties from the de󰎓nition
is/are not satis󰎓ed?

󲪞estion 9 (Normal operators). Let V be a 󰎓nite-dimensional real inner product space. De󰎓ne

A := {T ∈ L(V ) | T is self-adjoint},
N := {T ∈ L(V ) | T is normal}.

Is A ⊂ N orN ⊂ A (or neither)? Are either a subspace of L(V )? What if V is a complex vector space?

󲪞estion 10 (Diagonalization). Let V be a 󰎓nite-dimensional vector space and T ∈ L(V ). Which of
the following is not equivalent to the others?

(a) T is diagonalizable
(b) V has a basis of eigenvectors of T
(c) V = E(λ1, T )⊕ · · ·⊕ E(λm, T )

(d) T has dimV distinct eigenvalues

󲪞estion 11 (Eigenvalues). Consider the “shi󰎗” operators R,L ∈ L(C∞) given by

R(x1, x2, x3, . . .) = (0, x1, x2, . . .),

L(x1, x2, x3, . . .) = (x2, x3, x4, . . .).

Find an eigenvalue of each, if one exists.

󲪞estion 12 (Dimension). Compute the dimension of the following real vector spaces.
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(i) Matn×m(C) (ii) Pn+1(C) (iii) dimCn

󲪞estion 13 (Orthogonal complements). Let V be a 󰎓nite-dimensional inner product space V with
subspace U . Which of the following is false?

(a) nullPU = U⊥

(b) dimU⊥ = dimV − dimU

(c) dimP 2
U = PU

(d) 󰀂PUv󰀂 = 󰀂v󰀂 for all v ∈ V

󲪞estion 14 (Linear maps). Which of the following is not a linear map on P(R)?

1. Tp = p′ 2. Tp = 3p 3. Tp = xp 4. Tp = p2

󲪞estion 15 (Spectral 󰓃eorem). Let V be a complex inner product space and T ∈ L(V ). Which of
the following is not an equivalence guaranteed by the Complex Spectral󰓃eorem?

(a) T is self-adjoint
(b) T is normal
(c) V has an orthonormal basis consisting of eigenvectors of T
(d) T has a diagonal matrix with respect to some orthonormal basis of V .

answers follow

Answers
1. (b) 6. (a) 11. R has no eigenvalues; λ = 1 for L
2. (d) 7. (dimV )− (dimU) 12. (i) 2nm (ii) 2(n+ 2) (iii) 2n
3. (b) 8. It is an inner product 13. (d)
4. k = 3 9. A ⊂ N and A is a subspace over R but not C 14. (d)
5. (b) 10. (d) 15. (a)
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2 Proof󲪞estions
󰓃e questions in this section are exercises from the suggested problems/assignments/tutorials. Sketches
of solutions/proofs are provided. 󰓃ese sketches ask “why?” whenever additional justi󰎓cation is needed.
When reading these sketches, you should try and󰎓ll in these details. You should try the problems
󰎓rst before looking at the sketches below.

󰓃e exercises covered are:

• 3.E.13
• 3.F.9
• 5.B.3
• 5.C.1
• 6.A.7
• 6.B.1
• 6.C.11
• 7.A.2

Exercise (Axler 3.E.13). Suppose U is a subspace of V , v1 + U, . . . , vm + U is a basis of V/U , and
u1, . . . , un is a basis of U . Prove that v1, . . . , vm, u1, . . . , un is a basis of V .

Solution. We are required to show that the list both spans V and is linearly independent.

To see that it spans, let w ∈ V and consider w + U . 󰓃en

w + U = (c1v1 + · · ·+ cmvm) + U

for some c1, . . . , cm. (Why?) 󰓃en w − (c1v1 + · · ·+ cmvm) ∈ U (why?) and so we have

w − (c1v1 + · · ·+ cmvm) = k1u1 + · · ·+ knun

for some u1, . . . , un. Hence

w = c1v1 + · · · cmvm + k1u1 + · · ·+ knun

and so span(v1, . . . , vm, u1, . . . , un) = V .

For linear independence, suppose that

c1v1 + · · ·+ cmvm + k1u1 + · · ·+ knun = 0.

󰓃is implies that
c1v1 + · · ·+ cmvm = −(k1u1 + · · ·+ knun),

so in particular, we notice that
c1v1 + · · ·+ cmvm ∈ U.

󰓃is implies that
c1(v1 + U) + · · ·+ cm(vm + U) = 0 + U.

(Why?) So we conclude that c1 = · · · = cm = 0, which in turn implies that k1 = · · · = kn = 0.
♦
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󰓃e following exercise gives a way to write a given linear functional as a linear combination of the
dual basis.

Exercise (Axler 3.F.9). Suppose that v1, . . . , vn is a basis of V and ϕ1, . . . ,ϕn is the corresponding dual
basis of V ′. Suppose ψ ∈ V ′. Prove that

ψ = ψ(v1)ϕ1 + · · ·+ ψ(vn)ϕn.

Solution. 󰓃ere exist scalars c1, . . . , cn such that ψ = c1ϕ1 + · · ·+ cnϕn. (Why?) So it remains to
show that ci = ψ(vi) for all i. Fix some i and compute:

ψ(vi) = ci · ϕi(vi) = ci.

(Why?) So ψ = ψ(v1)ϕ1 + · · ·+ ψ(vn)ϕn. ♦

Exercise (5.B.3). Suppose T ∈ L(V ) and T 2 = I and −1 is not an eigenvalue of T . Prove that T = I .

Solution. Since T 2 = I we have T 2 − I = 0 or equivalently, (T − I)(T + I) = 0. We conclude
(why?) that T − I = 0 (i.e., (T − I)v = 0 for all v ∈ V ) so T = I . ♦

Exercise (5.C.1). Suppose T ∈ L(V ) is diagonalizable. Prove that V = nullT ⊕ rangeT .

Solution. 󰓃e result is clear if T is injective. (Why?)

So we treat the case that T is not injective. Since T is diagonalizable, we have that

V = E(λ1, T )⊕ · · ·⊕ E(λm),

where λ1, . . . ,λm are the eigenvalues of T . Note that 0 is an eigenvalue of T and in particular,
we have nullT = E(0, T ). (Why?) Write λ1 = 0 so label the remaining, nonzero eigenvalues (if
they exist) are λ2, . . . ,λm. It su󰎏ces to show that rangeT = E(λ2, T )⊕ · · ·⊕ E(λm, T ).

(⊆) If w ∈ rangeT then there is some v ∈ V such that Tv = w. Since the eigenspaces form a
direct sum of V , we have that v = c1v1 + · · ·+ cmcm for vi ∈ E(λi, T ). 󰓃en:

w = Tv

= T (c1v1 + c2v2 + · · ·+ cmvm)

= T (c2v2 + · · ·+ cmvm) (Why?)
= c2λ2v2 + · · ·+ cmλmvm,

so it follows that w ∈ E(λ2, T )⊕ · · ·⊕ E(λm, T ).

(⊇) Let v2 + · · ·+ vm ∈ E(λ2, T )⊕ · · ·⊕ E(λm, T ). 󰓃en

T

󰀕
1

λ2

v2 + · · ·+ 1

λm

vm

󰀖
= v2 + · · ·+ vm,

since λi ∕= 0 for all i = 2, . . . ,m. Hence v2 + · · ·+ vm ∈ rangeT . ♦
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Exercise (6.A.7). Suppose u, v ∈ V . Prove that 󰀂au + bv󰀂 = 󰀂ub + av󰀂 for all a, b ∈ R if and only if
󰀂u󰀂 = 󰀂v󰀂.

Solution. 󰓃e forward direction is straightforward. (Why? Pick convenient values of a and b.)

Now suppose that 󰀂u󰀂 = 󰀂v󰀂 and let a, b ∈ R be arbitrary. It is su󰎏cient to show that 󰀂au +
bv󰀂2 = 󰀂bu+ av󰀂2. (Why?) You should 󰎓ll in the missing steps in the following computation:

󰀂au+ bv󰀂2 = 〈au+ bv, au+ bv〉
= a2󰀂u󰀂2 + b2󰀂v󰀂2 + 〈av, bu〉+ 〈bu, av〉
= a2󰀂v󰀂2 + b2󰀂u󰀂2 + 〈av, bu〉+ 〈bu, av〉 (Why?)
= 〈bu+ av, bu+ av〉.

♦

Exercise (6.B.1).

(a) Suppose θ ∈ R. Show that the two lists (cos θ, sin θ), (− sin θ, cos θ) and (cos θ, sin θ), (sin θ,− cos θ)
are orthonormal bases of R2.

(b) Show that any orthonormal basis of R2 is of the form given by one of the two lists of part (a).

Solution.

(a) Note that we are equipping R2 with the usual Euclidean inner product (i.e., the dot product).
For each list, label the elements α, β. It is a straightforward computation to verify that:

• 〈α,α〉 = 1,
• 〈β, β〉 = 1,
• 〈α, β〉 = 0,

as you should verify. Why is this su󰎏cient to show that each list α, β is an orthonormal
basis?

(b) What does an orthonormal basis of R2 look like? Argue geometrically. (Note that the two
vectors must lie on the unit circle. What else can you say?)

♦

Exercise (6.C.11). In R4 with the Euclidean inner product, let

U = span
󰀃
(1, 1, 0, 0), (1, 1, 1, 2)

󰀄
.

Find u ∈ U such that 󰀂u− (1, 2, 3, 4)󰀂 is as small as possible.
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Solution. By the result of 6.55(i), we are required to compute

PUv = 〈v, e1〉e1 + 〈v, e2〉e2,

where v− (1, 2, 3, 4) and e1, e2 is an orthonormal basis of U . You should compute that the Gram-
Schmidt yields an orthonormal basis

e1 =

󰀕
1√
2
,
1√
2
, 0, 0

󰀖
, e2 =

󰀕
0, 0,

1√
5
,
2√
5

󰀖
.

󰓃en you can compute that

PUv =

󰀕
3

2
,
3

2
,
11

5
,
22

5

󰀖
.

♦

Exercise (7.A.2). Suppose T ∈ L(V ). Prove that λ ∈ F is an eigenvalue of T if and only if λ is an
eigenvalue of T ∗.

Solution. It is equivalent to show that: λ ∈ F is not an eigenvalue of T if and only if λ is not an
eigenvalue of T ∗. 󰓃en:

λ is not an eigenvalue of T
⇐⇒ T − λI is invertible (Why?)
⇐⇒ S(T − λI) = I for some S ∈ L(V ) (Why? Note S is an inverse)
⇐⇒ (T ∗ − λI)S∗ = I (Why?)
⇐⇒ T ∗ − I is invertible
⇐⇒ λ is not an eigenvalue of T ∗

♦
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