
MIKE CUMMINGS

MATH 2LA3 COURSE NOTES

Contents

Introduction 3

A Linear Programming 5
A.1 Introduction 5
A.2 Geometric method 7
A.3 Optional review: Solving linear systems using matrices 9
A.4 Simplex method 12
A.5 The simplex method beyond the canonical setup 18
A.6 FAQs 20

B Dynamical Systems 23
B.1 Introduction 23
B.2 Differential equations, very briefly 23
B.3 Eigenvalues and eigenvectors 24
B.4 Matrix decomposition: Diagonalization 29

C Minimizing Distance 35
C.1 Dot product and distance 35
C.2 Subspaces and bases 37
C.3 Orthonormal bases and Gram-Schmidt 39
C.4 Closest vector to a subspace 42
C.5 Matrix decomposition: QR factorization 44
C.6 Least squares problems 46
C.7 Lines of best fit 48

2

D Constrained Optimization 51
D.1 Matrix decomposition: Orthogonal diagonalization 52
D.2 Quadratic forms 54
D.3 Optimal values of quadratic forms 55
D.4 Classification of quadratic forms 57

E Three Applications of Singular Value Decomposition 59
E.1 Matrix decomposition: Singular value decomposition 59
E.2 Pseudoinverses and least squares problems 63
E.3 Mean, variance, and covariance 65
E.4 Principal component analysis 67
E.5 Image compression 70

F Markov Chains 73
F.1 Stochastic matrices and long-term behaviour 74
F.2 PageRank 77

Introduction

Welcome to Math 2LA3! This is a course about using linear algebra
to solve real-world problems. This document contains the notes for the
course's lectures.

The main reference for this course is the textbook Linear Algebra
and its Applications (6th ed.) by Lay, Lay, and McDonald. Most of the
material in these notes has been derived from this textbook, so if you
want more detail, check there. The course schedule lists the textbook
section(s) associated to each topic.

It is important to remember that reading mathematics is not a passive
activity; it requires checking all of the details and constantly checking
with yourself that you understand each little point. There is a common
saying for reading mathematics: Don't read it; fight it!1 Don't believe 1 Attribution: Paul Halmos in his auto-

biography, I Want to be a Mathemati-
cian, An Automathography.

the author, you should be convincing yourself that every detail is correct
and, when you have questions, ask the instructor!

This document was last updated on August 6, 2024

A
Linear Programming

A.1 Introduction

Here's a problem, familiar from the world of calculus.

Find the maximal value of the function f (x) on the interval x ∈ [0, 1].

This is an example of an optimization problem, where we try to ei-
ther maximize or minimize a function on some domain. Here's another
example of an optimization problem.

Example A.1. Assume that your favourite pastry shop sells two main
products: doughnuts for $1.25 and muffins for $1.50.

• Each doughnut requires 30g of flour, 10g of sugar, and 20g of oil;
• Each muffin requires 40g of flour, 20g of sugar, and 10g of oil.

If the store has 6kg of flour, 2.8kg of sugar, and 3kg of oil, how many of
each product should they make to maximize revenue?

Denote by D the number of doughnuts and M the number of muffins.
Revenue is given by R(D, M) = 1.25D + 1.50M. We also have to bear
in mind the amount of ingredients we have,

30D + 40M ≤ 6000, (flour)
10D + 20M ≤ 2800, (sugar)
20D + 10M ≤ 3000. (oil)

Rewriting using matrix multiplication notation, we want to maximize
the quantity Make sure you believe this matrix mul-

tiplication. If you don't, check your
notes from your last linear algebra
class!

󰁫
1.25 1.50

󰁬 󰀥D
M

󰀦
= 1.25D + 1.50M

while also satisfying the constraints󰀵

󰀹󰀷
30 40
10 20
20 10

󰀶

󰀺󰀸

󰀥
D
M

󰀦
≤

󰀵

󰀹󰀷
6000
2800
3000

󰀶

󰀺󰀸 ,

6 math 2la3 course notes

as well as the implicit constraints
D ≥ 0 and M ≥ 0.

This is an example of a linear programming problem, so named because
both the constraints and the function we wish to maximize are linear
functions. We formalize this in the following definition. Compare this definition with the previ-

ous example. Everything in this defini-
tion should have a counterpart in the
example, and vice versa.

For instance, 󰂓c T󰂓x is the generalized
version of the revenue function R(D, M)
from the previous example.

Definition A.2. A canonical linear programming problem asks
the following: find the vector 󰂓x to

maximize 󰂓c T󰂓x

subject to

󰀻
󰀿

󰀽
A󰂓x ≤󰂓b

󰂓x ≥ 0,

where󰂓b ∈ Rm and 󰂓c ∈ Rn are fixed (column) vectors and A is an m × n
matrix with entries in R. We call 󰂓c T󰂓x the objective function.

In this definition, 󰂓c T󰂓x is the linear function we wish to maximize,
which is exactly the function R(D, M) from the example.1 Similarly, 1 We have to take the transpose of 󰂓c in

order for the matrix multiplication 󰂓c T󰂓x
to make sense. If you're not convinced,
go back to the example and try to com-

pute 󰂓c󰂓x where 󰂓c =
󰀗

1.25
1.50

󰀘
and 󰂓x =

󰀗
D
M

󰀘
.

the condition A󰂓x ≤ 󰂓b is exactly the system of constraints from the
example for the flour, sugar, and oil.

Definition A.3. Consider the canonical linear programming problem:
maximize 󰂓c T󰂓x

subject to

󰀻
󰀿

󰀽
A󰂓x ≤󰂓b

󰂓x ≥ 0.

The feasible region of this problem is the set of vectors 󰂓x that satisfy
the constraints A󰂓x ≤󰂓b and 󰂓x ≥ 0. We denote by F the feasible region:

Remember that when we write 󰂓x ≥ 0,
we are requiring that each component
xi of the vector 󰂓x satisfies xi ≥ 0.

F = {󰂓x ∈ Rn | A󰂓x ≤󰂓b and 󰂓x ≥ 0}.

A vector 󰂓x∗ in F is called an optimal solution if it solves the linear
programming problem. That is, it is optimal if

󰂓c T󰂓x∗ = max
󰂓x∈F

󰀓
󰂓c T󰂓x

󰀔
.

Before discussing how to find solutions to linear programming prob-
lems, we record a fact that guarantees the existence of a solution in some
cases. What are the cases where we have a solution? Well, the following
two examples give us an idea of cases that don't have a solution.

Example A.4. Consider the following linear programming problem:
maximize 5x

subject to

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

x ≤ 3

−x ≤ −4

x ≥ 0.

Elements x of the feasible set must satisfy both x ≤ 3 and also x ≥
4, which is impossible. Since the feasible region is empty, there is no
solution.

linear programming 7

Example A.5. Consider the following linear programming problem:

maximize 5x

subject to

󰀻
󰀿

󰀽
−x ≤ −4

x ≥ 0.

The constraints only require that x ≥ 4, so 5x can get arbitrarily large!
So we have no hope of picking a single x that maximizes 5x.

An unbounded linear programming problem is one where the ob-
jective function is unbounded on the feasible region, like the previous
example. We say the problem is bounded otherwise.

Theorem A.6. Consider a bounded linear programming problem with
feasible set F . If F is nonempty, then there is at least one solution to
the problem.

Moreover, at least one of the optimal solutions occurs at a vertex of
the feasible region.

This theorem is extremely useful! It says that when solutions exist,
all we need to do is to find the vertices. Because our constraints are A vertex is also called an extreme

point or a corner.a system of linear equations, this implies that the feasible region will
have corners and these corners are exactly what we mean by an extreme
point. If you're not yet sure what we mean

by a vertex, we will draw pictures in a
minute that will clarify.

A.2 Geometric method

When the domain of linear programming problem is in low-dimension,
such as R2, we can directly apply the result of Theorem A.6. That is, we
can sometimes explicitly compute the feasible region to find the vertices.

We proceed with an example. Consider the line x + 2y = 4. This is
exactly the line y = − 1

2 x + 2 sketched in Figure A.1.
Replacing the equality with an inequality yields x + 2y ≤ 4. Per-

forming the same rearrangement, this is equivalent to y ≤ − 1
2 x + 2. We

interpret this as the region in the xy-plane underneath the line − 1
2 x + 2.

This region is also sketched in Figure A.1, where we additionally impose
the constraint that x ≥ 0 and y ≥ 0.

The vertices corresponding to the region x+ 2y ≤ 4, x ≥ 0, and y ≥ 0
are the three vertices of the triangle. Theorem A.6 then guarantees that,
if this were the feasible region of a linear programming problem, then a
solution to this problem would occur at one of these vertices.

Example A.7. Let us continue Example A.1. Recall that our linear

8 math 2la3 course notes

y

0
x

y

0
x

(0, 2)

(4, 0)

Figure A.1: The curve x + 2y = 4 (left)
and the region x + 2y ≤ 4 with x ≥ 0
and y ≥ 0 (right).

programming problems is:

maximize R(D, M) =
󰁫
1.25 1.50

󰁬 󰀥D
M

󰀦

subject to

󰀵

󰀹󰀷
30 40
10 20
20 10

󰀶

󰀺󰀸

󰀥
D
M

󰀦
≤

󰀵

󰀹󰀷
6000
2800
3000

󰀶

󰀺󰀸 ,

and D ≥ 0, M ≥ 0

where D and M are the number of doughnuts and muffins, respectively,
to produce. Let us construct the feasible region for this linear pro-
gramming problem. That is, we are required to intersect the regions
30D + 40M ≤ 6000, with 10D + 20M ≤ 2800, and with 20D + 10M ≤
3000. We sketch the feasible region in the figure below. It is also avail-
able on desmos.2 2 Thanks, Prof. Junkins!

M

0 D

30D + 40M = 6000

10D + 20M = 2800

20D + 10M = 3000

M

0 D

(0, 140)
(40, 120)

(120, 60)

(150, 0)

Figure A.2: Doughnuts and Muffins
feasible region.

For the figure, we compute the ver-
tices as points of intersections between
pairs of constraints. For instance, the
vertex (40, 120) is the intersection of
10D + 20M = 2800 with 30D + 40M =
6000.

Theorem A.6 guarantees that a solution to the linear programming
problem is one of the vertices, so we compute R(D, M) for each vertex:

R(0, 0) = 0, R(0, 140) = 210, R(40, 120) = 230,

R(120, 60) = 240, R(150, 0) = 187.50.

We conclude that the solution to the linear programming problem is
D = 120 and M = 60. That is, the shop should produce 120 doughnuts
and 60 muffins.

https://www.desmos.com/calculator/zamy9yurrf

linear programming 9

We summarize the geometric method as follows. Remember that the
reason this method works is because of the result of Theorem A.6.

Geometric method.
Consider a linear programming problem in canonical form:

maximize 󰂓c T󰂓x

subject to

󰀻
󰀿

󰀽
A󰂓x ≤󰂓b

󰂓x ≥󰂓0.

1. Construct the feasible region F , the set of 󰂓x that satisfy both
A󰂓x ≤󰂓b and 󰂓x ≥ 0.

2. Find the vertices of the feasible region.

3. For each vertex 󰂓v of F , compute 󰂓c T󰂓v.

The solutions to the linear programming problem are the 󰂓v
that yield the largest value of 󰂓c T󰂓v.

Exercise 1. Consider the following linear programming problem.

minimize 5x + 3y

subject to

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

2x + 5y ≥ 10

3x + y ≥ 6

x + 7y ≥ 7

x ≥ 0 and y ≥ 0.

Notice that we are being asked to minimize our objective function
rather than maximize. Also, notice that the first three inequalities are
flipped and are in the wrong direction.

(a) Rewrite the linear programming problem as a canonical linear pro-
gramming problem (as in Definition A.2).

Hints: (i) How can you flip an inequality? (ii) What did we do in
Example A.4?

(b) Use the geometric method to solve the canonical linear programming
problem from part (a).

A.3 Optional review: Solving linear systems using matrices

Unfortunately, the geometric method cannot always be used to solve a
linear programming problem. We are only able to reasonably compute
the feasible region in low dimension (in R2 and maybe R3), so in higher
dimensions, we need a new tool. This new tool, called the simplex

10 math 2la3 course notes

method, will be discussed in the next section but we first need to recall
some terminology and technology from first-year linear algebra.

One motivation for using matrices is that solving a large system of
linear equations is quite unwieldily. For instance, we will solve the fol-
lowing system in two ways: (i) directly, and (ii) using matrices.

Example A.8. Find the solution(s) (x, y, z) to the system󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

3x + 5y − 4z = 7

−3x − 2y + 4z = −1

6x + y − 8z = −4.

Method 1 (direct). Rearrange the third equation to solve for y,
y = −6x + 8z − 4.

Now replace y in each of the first two equations with this formula. This
yields the system󰀻

󰁁󰁁󰀿

󰁁󰁁󰀽

3x + 5(−6x + 8z − 4)− 4z = 7

−3x − 2(−6x + 8z − 4) + 4z = −1

y = −6x + 8z − 4.

This simplifies to the following:󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

−27x + 36z = 27

9x − 12z = −9

y = −6x + 8z − 4

⇐⇒

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

−3x + 4z = 3

3x − 4z = −3

y = −6x + 8z − 4,

where we have divided by 3 each of the first two equations. It is now
clear the first two equations are the same; they say that we must have
that

x =
4
3

z − 1

and, plugging in to the third equation, this yields:󰀻
󰀿

󰀽
x = 4

3 z − 1

y = −6
󰀓

4
3 z − 1

󰀔
+ 8z − 4

⇐⇒

󰀻
󰀿

󰀽
x = 4

3 z − 1

y = 2.

So the solutions to the system are of the form󰀵

󰀹󰀷
x
y
z

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷

4
3 t − 1

2
t

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
4/3

0
1

󰀶

󰀺󰀸 t +

󰀵

󰀹󰀷
−1
2
0

󰀶

󰀺󰀸 ,

where t is a free variable. By that, we mean that we get a solution for
any value of t ∈ R.

Method 2 (Gauss-Jordan elimination). Start by writing the
system as the augmented matrix󰀵

󰀹󰀷
3 5 −4 7
−3 −2 4 −1
6 1 −8 −4

󰀶

󰀺󰀸

linear programming 11

and we perform the following elementary row operations:
󰀵

󰀹󰀷
3 5 −4 7
−3 −2 4 −1
6 1 −8 −4

󰀶

󰀺󰀸
R1−5R3

R2+2R3 ∼

󰀵

󰀹󰀷
−27 0 36 27

9 0 −12 −9
6 1 −8 −4

󰀶

󰀺󰀸

−1
9 R1
1
3 R2 ∼

󰀵

󰀹󰀷
3 0 −4 −3
3 0 −4 −3
6 1 −8 −4

󰀶

󰀺󰀸 R2−R1

R3−2R1

∼

󰀵

󰀹󰀷
3 0 −4 −3
0 0 0 0
0 1 0 2

󰀶

󰀺󰀸

1
3 R1

R2↔R3 ∼

󰀵

󰀹󰀷
1 0 −4/3 −1
0 1 0 2
0 0 0 0

󰀶

󰀺󰀸 .

The row of zeros tells us that we have a free variable and, as a result,
have infinitely-many solutions. We can read off the solutions satisfy󰀻

󰀿

󰀽
x − 4

3 z = −1

y = 2

or equivalently, 󰀵

󰀹󰀷
x
y
z

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
−1
2
0

󰀶

󰀺󰀸+

󰀵

󰀹󰀷
4/3

0
1

󰀶

󰀺󰀸 t,

for any t ∈ R. This computation agrees with Method 1 but was much
cleaner. It is straightforward to see that Method 2 will be easier to
perform for arbitrarily large systems of linear equations, compared to
Method 1.

Exercise 2. Without repeating the computations, how many solutions
would we have to the system in the previous example if: This exercise can be done without re-

peating the computations and without
plugging the system into an online cal-
culator. Think about what it means for
a system to have infinitely-many solu-
tions vs exactly one solution vs no so-
lutions.

(a) the second equation is replaced by −3x − 2y + 4z = 0.
(b) the second equation is replaced by −3x − 2z + 3z = −1.

We now review some terminology from first-year linear algebra relat-
ing Gauss-Jordan elimination (AKA row reduction) of matrices.

A matrix is said to be in row echelon form (REF) if:

(i) rows of all 0's are at the bottom; below all nonzero rows,
(ii) every leading entry of a row is in a column to the right of the

leading entry of the row above it,
(iii) all entries in a column below a leading entry are zero.

A matrix is in reduced row echelon form (RREF) if it is in row
echelon form and, moreover, satisfies:

(iv) the first nonzero entry in each row is a 1 (called a leading 1),
(v) each leading 1 is the only nonzero entry in its column.

Exercise 3. Give an example of a matrix that is in reduced row echelon
form. Give an example of a matrix that is in row echelon form but not
reduced row echelon form. Lastly, give an example of a matrix that is
not in row echelon form.

12 math 2la3 course notes

Recall that we can read off the number of solutions to a system of
linear equations from the REF of an augmented matrix. If the REF has
a row of all zeros, then the system will have infinitely-many solutions.
On the other hand, if the REF has a row of all zeros except for a nonzero
entry in the last column, then there will be no solution. Otherwise, there
is a unique solution.

A pivot of a matrix is an entry that corresponds to a leading 1 in
the RREF of that matrix. The column containing a pivot is called a Pivots will play an important role in

the simplex method that we will discuss
in the next section.

pivot column.
Gauss-Jordan elimination is the process of applying elementary

row operations to a matrix to reduce it to (reduced) row echelon form.
Elementary row operations are:

• multiplying a row by a nonzero scalar,

• adding a multiple of a row to another row,

• reordering rows.

A.4 Simplex method

The simplex method is an algorithm that solves linear programming
problems. Although it is more complicated than the geometric approach
we discussed earlier, its benefit is that it does not require us to be able
to draw the feasible region, something that is impractical in higher di-
mensions.

The simplex method for canonical linear programming problems

We first outline the simplex method in an example before stating the
general algorithm. The key to this example, and the simplex method
more generally, is translating the linear programming problem into one
for which we can exploit the power of matrices we discussed in the pre-
vious section.

Example A.9. Consider the following linear programming problem:

maximize 2x + y

subject to

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

3x + 2y ≤ 15

−x + 2y ≤ 9

x, y ≥ 0.

The inequality 3x + 2y ≤ 15 is equivalent to requiring that both
3x + 2y + s = 15 and s ≥ 0. Indeed, if s ≥ 0, then 3x + 2y ≤ 3x + 2y +

s = 15. So we will rewrite the linear programming problem as:

linear programming 13

maximize 2x + y

subject to

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

3x + 2y + s = 15

−x + 2y + t = 9

s, t, x, y ≥ 0.

The variables s and t are called slack variables, variables introduced
to rewrite an inequality as an equality.

A basic solution is when x = 0 and y = 0, so 2x + y = 0. It is clear
that this is not an optimal solution, so we must do some more work.
Let M = 2x + y, so maximizing the objective function is the same as
maximizing M. We then have the following three equations:

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

3x + 2y + s = 15

−x + 2y + t = 9

−2x − y + M = 0

which we can write as the following augmented matrix,
󰀵

󰀹󰀷
3 2 1 0 0 15
−1 2 0 1 0 9
−2 −1 0 0 1 0

󰀶

󰀺󰀸 ,

which we call the corresponding simplex tableau. The first column
corresponds to x, the second to y, and so on for s, t, and M, respectively.

Our basic solution corresponds to setting equal to zero the variables
corresponding to columns that are not from the identity matrix. That
is, the third, fourth, and fifth columns are zero with one nonzero entry,
so the other columns (the first and second) correspond to variables that
we set to zero in the basic solution.

Equivalently, the variables that we set to zero for the basic solution
are exactly those corresponding to nonzero entries in the bottom row.

Now, our goal is to increase M. Since M = 2x+ y, the largest increase
in M will come from increasing x. This can be seen from the augmented
matrix by identifying entry in the last row with the most negative entry.

To increase x, we cannot set it to zero in the basic solution. That
means, we must perform row operations so that the column correspond-
ing to x looks like a column from an identity matrix. We do so by
pivoting the first column as follows:

󰀵

󰀹󰀷
3 2 1 0 0 15
−1 2 0 1 0 9
−2 −1 0 0 1 0

󰀶

󰀺󰀸

1
3 R1

∼

󰀵

󰀹󰀷
1 2/3 1/3 0 0 5
−1 2 0 1 0 9
−2 −1 0 0 1 0

󰀶

󰀺󰀸 R2+R1

R3+2R1

∼

󰀵

󰀹󰀷
1 2/3 1/3 0 0 5
0 8/3 1/3 1 0 14
0 1/3 2/3 0 1 10

󰀶

󰀺󰀸 .

The non-identity-matrix columns are the second and third columns,
so our new basic solution corresponds to y = 0 and s = 0. This then
says that x = 5 and M = 10.

14 math 2la3 course notes

Geometrically, we have moved from the basic solution of (x, y) =

(0, 0) to our new basic solution of (x, y) = (5, 0). It turns out that if a
basic solution lies inside the feasible region, then it occurs at a vertex of
the feasible region.

Because, from the third row of the augmented matrix, we have that
M = 10 − 1

3 y − 2
3 s, we cannot increase M anymore. We conclude that We must have found a maximum be-

cause we cannot further increase our
objective function.

subject to the given constrains, the maximum of 2x + y is 10, which
occurs when (x, y) = (5, 0).

Exercise 4. Use the geometric method to solve the previous linear
programming problem. Verify that your two answers are the same.

There is a subtlety that we will discuss next about this method. But
first, it should be clear that this approach, which can be completed
by working only with matrices, will scale easily to higher-dimensional
problems, unlike the geometric method.

Here is the subtlety: In Example A.9, we needed to pivot the first
column and chose to use the first row to do so. However, as the following
computation shows, we cannot use the second row for the pivot.

󰀵

󰀹󰀷
3 2 1 0 0 15
−1 2 0 1 0 9
−2 −1 0 0 1 0

󰀶

󰀺󰀸−R2 ∼

󰀵

󰀹󰀷
3 2 1 0 0 15
1 −2 0 −1 0 −9
−2 −1 0 0 1 0

󰀶

󰀺󰀸
R1−3R2

R3+2R2

∼

󰀵

󰀹󰀷
0 8 1 3 0 42
1 −2 0 −1 0 −9
0 −5 0 −2 1 −18

󰀶

󰀺󰀸 .

The corresponding basic solution has y = 0 and t = 0, so x = −9.
But x must be nonnegative, so we have a contradiction.

Question A.10. Which row(s) can we pick for pivoting?

Pivoting Procedure.
Consider the following simplex tableau:

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

a1,1 a1,2 · · · a1,m b1

a2,1 a2,2 · · · a2,m b2
...

...
an,1 an,2 · · · an,m bn

c1 c2 · · · cn k

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸

The column we pivot is the column whose entry cj in the final
row is the most negative among the columns corresponding to
the non-slack variables. Suppose this is the j-th column.
To find the corresponding row:

1. For each entry ai,j appearing in the same column as cj, compute
the ratio bi/ai,j.

2. Pivot at the entry ar,j for which br/ar,j is the smallest nonneg-
ative ratio computed in step 1.

linear programming 15

It may happen that there may be more
than one row with the smallest nonneg-
ative ratio bk/ar,k. This can lead to
a phenomenon called cycling, where
the simplex method fails because the
tableau remains constant after each
pivot. This usually does not arise when
our linear programming problems arise
from the real-world.

Following this procedure avoids the issue from the previous example;
doing this will guarantee that we will never find a negative answer.

Example A.11. Let's revisit the simplex tableau from example A.9:

󰀵

󰀹󰀷
3 2 1 0 0 15
−1 2 0 1 0 9
−2 −1 0 0 1 0

󰀶

󰀺󰀸 .

Among the given variables x and y, corresponding to columns 1 and
2, the most negative entry in the last row is the −2, so we want to pivot
the first column.

Above this −2, there is only one positive entry, which occurs in the
first row, so we pivot with respect to the entry in the first row, first
column.

Here's another simplex tableau:

󰀵

󰀹󰀹󰀹󰀷

2 3 4 1 0 0 0 60
3 1 5 0 1 0 0 46
1 2 1 0 0 1 0 50

−25 −33 −18 0 0 0 1 0

󰀶

󰀺󰀺󰀺󰀸
.

From the tableau, we can see that there are 3 given variables (cor-
responding to the first three columns) and 3 slack variables (columns
four through six). Among those in the last row, the entry in the second
column is the most negative entry, so we wish to pivot with respect to
one of the entries in the second column, indicated here:

󰀵

󰀹󰀹󰀹󰀷

2 3 4 1 0 0 0 60
3 1 5 0 1 0 0 46
1 2 1 0 0 1 0 50

−25 −33 −18 0 0 0 1 0

󰀶

󰀺󰀺󰀺󰀸
.

We compute the ratios bi/ai,2 for i = 1, 2, 3:

60/3 = 20; 46/1 = 46; 50/2 = 25.

So we pivot with respect to the first row.

Exercise 5. Give an example of a canonical linear programming prob-
lem whose initial simplex tableau dictates that the first pivot should
occur in the third row and third column.

We now have all the tools to state the simplex algorithm for canonical
linear programming problems. We do that next, then work through a
final example, and then move on to the next topic.

16 math 2la3 course notes

Simplex algorithm for canonical linear programming
problems.
Consider a canonical linear programming problem,

maximize 󰂓c T󰂓x

subject to

󰀻
󰀿

󰀽
A󰂓x ≤󰂓b

󰂓x ≥󰂓0,

where 󰂓b is a vector with strictly positive entries.

1. Add slack variables to change the inequality A󰂓x ≤󰂓b into an
equality. Write M = 󰂓c T󰂓x.

2. Set up the initial simplex tableau as the following aug-
mented block matrix:

󰀵

󰀹󰀹󰀹󰀷
A I 󰂓b

−󰂓c T 0 0 · · · 0 1 0

󰀶

󰀺󰀺󰀺󰀸
,

where I are the columns of some identity matrix.
3. Check the last row to see if the current state is optimal. If

all of the entries are nonnegative, then the solution is optimal.
Otherwise, let k be the column for which the most negative en-
try in the last row occurs in the k-th spot. Apply the Pivoting
Procedure.

4. Repeat step 3 until the solution is optimal, which occurs when
all the entries in the last row are nonnegative.

Example A.12. We will the following canonical linear programming
problem using the simplex method:

maximize 25x + 33y + 18z

subject to

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

2x + 3y + 4z ≤ 60

3x + y + 5z ≤ 46

x + 2y + z ≤ 50

x, y, z ≥ 0.

We start by introducing slack variables, so the constraints become:
󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

2x + 3y + 4z + s1 = 60

3x + y + 5z + s2 = 46

x + 2y + z + s3 = 50

x, y, z, s1, s2, s3 ≥ 0,

linear programming 17

and construct the simplex tableau:

󰀵

󰀹󰀹󰀹󰀷

2 3 4 1 0 0 0 60
3 1 5 0 1 0 0 46
1 2 1 0 0 1 0 50

−25 −33 −18 0 0 0 1 0

󰀶

󰀺󰀺󰀺󰀸
,

where the last row corresponds to the objective function M = 25x +

33y + 18z.
The basic solution at the moment is to take x = y = z = 0 which

corresponds to M = 0.
The most negative entry in the last row is the −33, so we want to

pivot an entry in the second column. This is exactly the second tableau
from Example A.11, so we know we must pivot with respect to the first
row and second column.

󰀵

󰀹󰀹󰀹󰀷

2 3 4 1 0 0 0 60
3 1 5 0 1 0 0 46
1 2 1 0 0 1 0 50

−25 −33 −18 0 0 0 1 0

󰀶

󰀺󰀺󰀺󰀸

1
3 R1

∼

󰀵

󰀹󰀹󰀹󰀷

2/3 1 4/3 1/3 0 0 0 20
3 1 5 0 1 0 0 46
1 2 1 0 0 1 0 50

−25 −33 −18 0 0 0 1 0

󰀶

󰀺󰀺󰀺󰀸
R2−R1

R3−2R1

R4+33R1

∼

󰀵

󰀹󰀹󰀹󰀷

2/3 1 4/3 1/3 0 0 0 20
7/3 0 11/3 −1/3 1 0 0 26
−1/3 0 −5/3 −2/3 0 1 0 10
−3 0 26 11 0 0 1 660

󰀶

󰀺󰀺󰀺󰀸

Now the basic solution is x = z = s1 = 0, which forces y = 20 and,
in turn, M = 660. We repeat the pivoting procedure, now with the first
column. The ratios are Recall that we do not need to compute

the ratio for the −1/3 in the first col-
umn, because it is negative.

20
2/3

= 30;
26
7/3

=
78
7

≈ 11.142,

so we pivot with respect to the first column, second row.

󰀵

󰀹󰀹󰀹󰀷

2/3 1 4/3 1/3 0 0 0 20
7/3 0 11/3 −1/3 1 0 0 26
−1/3 0 −5/3 −2/3 0 1 0 10
−3 0 26 11 0 0 1 660

󰀶

󰀺󰀺󰀺󰀸
3
7 R2 ∼

󰀵

󰀹󰀹󰀹󰀷

2/3 1 4/3 1/3 0 0 0 20
1 0 11/7 −1/7 3/7 0 0 78/7

−1/3 0 −5/3 −2/3 0 1 0 10
−3 0 26 11 0 0 1 660

󰀶

󰀺󰀺󰀺󰀸

R1− 2
3 R2

R3+ 1
3 R2

R4+3R2

∼

󰀵

󰀹󰀹󰀹󰀷

0 1 2/7 3/7 −2/7 0 0 88/7

1 0 11/7 −1/7 3/7 0 0 78/7

0 0 −8/7 −5/7 1/7 1 0 96/7

0 0 215/7 74/5 9/7 0 1 4854/7

󰀶

󰀺󰀺󰀺󰀸
.

Because all of the coefficients in the last row are nonnegative, we are
done. The solution is z = s1 = s2 = 0 and hence x = 78

7 and y = 88
7 .

This corresponds to a maximum of M = 4854
7 .

18 math 2la3 course notes

A.5 The simplex method beyond the canonical setup

Consider a canonical linear programming problem:

maximize 󰂓c T󰂓x

subject to

󰀻
󰀿

󰀽
A󰂓x ≤󰂓b

󰂓x ≥󰂓0.

In the previous section, we required that 󰂓b > 󰂓0, that is, that every
entry of 󰂓b is positive.

Question A.13. What happens if some entries of󰂓b are zero or negative?

If an entry of 󰂓b is zero, then cycling may occur during the sim-
plex method, where the tableau does not change during pivoting, which
means the process will never terminate! Thankfully, this usually does
not occur for problems arising in the real world.

Unfortunately, problems from the real world can have yield negative
entries in󰂓b. The issue is that the initial basic solution will not lie within
the feasible region, so the first step will be to pivot variables so that we
do lie inside the feasible region. If we are able to do this, then we can
still apply the simplex method.

Notice that this maximization problem
is equivalent to minimizing the func-
tion x + 2y subject to the constraints
x + y ≥ 14 and x − y ≤ 4, with x, y ≥ 0.

Example A.14.
minimize x + 2y

subject to

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

−x − y ≤ −14

x − y ≤ 2

x, y ≥ 0

Minimizing x + 2y is equivalent to maximizing −x − 2y. We then
introduce slack variables as usual and let M = −x − 2y, or equivalently,
x + 2y + M = 0. We thus have the following simplex tableau:

󰀵

󰀹󰀷
−1 −1 1 0 0 −14
1 −1 0 1 0 2
1 2 0 0 1 0

󰀶

󰀺󰀸 .

However, our basic solution x = y = 0 results in the slack variable
for the third column taking value s = −14, but we required all variables
(including slack variables) to be nonnegative! This can be solved by
pivoting in the first row at an entry with a negative value. Let's pivot
at the first row, second column.3 3 You can try pivoting at row 1, column

1. It also works!

󰀵

󰀹󰀷
−1 −1 1 0 0 −14
1 −1 0 1 0 2
1 2 0 0 1 0

󰀶

󰀺󰀸
−R1

∼

󰀵

󰀹󰀷
1 1 −1 0 0 14
1 −1 0 1 0 2
1 2 0 0 1 0

󰀶

󰀺󰀸 R2+R1

R3−2R1

󰀵

󰀹󰀷
1 1 −1 0 0 14
2 0 −1 1 0 16
−1 0 2 0 1 −28

󰀶

󰀺󰀸

linear programming 19

The basic solution is now x = s = 0, where s is the slack variable in the
third column. Also, y = 14 and the slack variable in the fourth column
is t = 16, so the basic solution lies in the feasible region and we can
begin the simplex method. We now want to pivot the first column, and
we have no choice but to pivot the second row.

󰀵

󰀹󰀷
1 1 −1 0 0 14
2 0 −1 1 0 16
−1 0 2 0 1 −28

󰀶

󰀺󰀸 1
2 R2 ∼

󰀵

󰀹󰀷
1 1 −1 0 0 14
1 0 −1/2 1/2 0 8
−1 0 2 0 1 −28

󰀶

󰀺󰀸
R1−R2

R3+R2

∼

󰀵

󰀹󰀷
0 1 −1/2 −1/2 0 6
1 0 −1/2 1/2 0 8
0 0 3/2 1/2 1 −20

󰀶

󰀺󰀸

This solution is now optimal; we have introduced both x and y to the
solution. Both the slack variables are 0 which forces x = 8 and y = 6,
corresponding to a maximum value of −x − 2y of −20. Hence, the
minimum of x + 2y is 20.

Remark A.15. The upshot is that the usual simplex method can still
be used beyond the canonical setup. However, before starting, we must
always ensure that the basic solution lies in the feasible region. In gen-
eral, to do this, we have to follow the following pivoting procedure.

Infeasible region pivoting procedure. Consider the following
simplex tableaux.

X =

󰀵

󰀹󰀹󰀹󰀷
A I 󰂓b

−󰂓c T 0 0 · · · 0 1 0

󰀶

󰀺󰀺󰀺󰀸
.

If one of the entries in󰂓b is negative, causing a basic solution to lie
outside the feasible region, we can fix this by pivoting as follows.

1. Let i be the row that we wish to pivot. That is, the i-th entry
of 󰂓b is negative.

2. For each entry xi,j in the same row as bi, compute the ratio
bi/xi,j.

3. Pivot in row i, column k, where k is the index for which the
ratio bk/xi,k is the smallest nonnegative ratio computed in
Step 2.

Remark A.16. We now have two pivoting procedures: the first to find
optimal values and the second to move within the feasible region. In
both, the pivot is determined by picking the smallest nonnegative ratio.
However,

• for the first pivoting procedure (to move closer to an optimal value),

20 math 2la3 course notes

we first fix the column we wish to pivot, then use the ratios to pick
the corresponding row

• for the second pivoting procedure (to move within the feasible region),
we first fix the row we wish to pivot, then use the ratios to pick the
corresponding column.

Simplex algorithm beyond the canonical setup.
Consider a canonical linear programming problem,

maximize/minimize 󰂓c T󰂓x

subject to

󰀻
󰀿

󰀽
A󰂓x ≤󰂓b

󰂓x ≥󰂓0,

where 󰂓b is now any vector.

1. If this is a minimization problem, then replace it with the
corresponding maximization problem.

2. Add slack variables to change the inequality A󰂓x ≤󰂓b into an
equality. Write M = 󰂓c T󰂓x.

3. Set up the initial simplex tableau as before.
4. If the initial basic solution does not lie within the feasible

region, pivot variables until it is. (Equivalently, pivot variables
until the last column only contains nonnegative entries.) To
do this, follow the infeasible pivoting procedure.

5. Now run the canonical simplex algorithm.

Exercise 6. Solve the exercises from Section 9.3 of the textbook until
you are comfortable with the simplex method (both for the canonical
problems, and minimization problems/problems with negative entries).

A.6 FAQs

Q. What are the differences between feasible solutions, optimal solu-
tions, and basic solutions?
A. These are defined as follows:

• A feasible solution is a vector that lies within the feasible region.
• An optimal solution is a vector that maximizes/minimizes the lin-

ear programming problem.
• A basic solution is a solution that is "trivial" in some sense. These

solutions can be identified from the simplex tableau, which dictates
which variables to set to 0, which forces exact values on the other
variables (rather than inequalities). The variables that are set to 0
are called basic variables and the others are called free variables.

linear programming 21

Every optimal solution is also a feasible solution. Similarly, basic
solutions should also be feasible. If they are not, then we are in the
setting of Section A.5. Feasible solutions and basic solutions are not
necessarily optimal.

Q. What happens if we have a negative entry in the bottom row that
corresponds to a slack variable?
A. We are still allowed to pivot in this column as we would a non-slack
variable. For an example, see Example 6 in Chapter 9.3 of the course
textbook.

B
Dynamical Systems

B.1 Introduction
In this class, we will be taking the
xkcd approach to modelling popula-
tions. That is, we will discuss mathe-
matical tools for population modelling
but not think about the biological fea-
sibility of our models. This aspect of
modelling is discussed in Math 3MB3.

Suppose we want to model the populations of rabbits and wolves with
respect to time. An increase in the population of wolves will lead to a
decrease in the population of rabbits, while an increase in the popula-
tion of rabbits will lead to an increase in the population of wolves. So,
we can model the populations using the following system of differential
equations: 󰀻

󰀿

󰀽
R′(t) = αR(t) + βW(t)

W ′(t) = γR(t) + δW(t).

The simplest case is when β and γ are both zero. In this case, we can
solve each equation separately, as we will review in Section B.2. If either
β or γ are nonzero, we will make use of linear algebra to simplify our
system. In this case, we will use diagonalization to perform a change This process is intentionally hand-wavy

for the time being. We will get into the
precise details in Section B.4, so do not
worry about them yet.

of variables into a new coordinate system, with respect to which, the
system is one that we can solve directly. Then, we will undo the change
of coordinates to recover the solution in the given terms.

B.2 Differential equations, very briefly

In this section, we will review some basic facts about differential equa-
tions. What is discussed here should be familiar from your Calc II course,
so our treatment will be brief.

Recall that d
dx ex = ex and d

dx kex = kex for any k. More generally, if
f (x) is a real-valued function of x, then the only solutions to f ′(x) =

f (x) are when f (x) = kex (which includes the trivial solution of f (x) =
0). Similarly, the only solutions to f ′(x) = C f (x) are of the form
f (x) = keCx. Indeed, we have that

d
dx

keCx = keCx · d
dx

(Cx) = C · keCx = C f (x).

So if we have the following system of differential equations, This is exactly the easy case discussed
in Section B.1.

https://xkcd.com/2945/

24 math 2la3 course notes

󰀻
󰀿

󰀽
f ′(x) = α f (x)

g′(x) = δg(x),

then the solutions are f (x) = k1eαx and g(x) = k2eδx. However, if we
have cross-terms, when the system has the following form,󰀻

󰀿

󰀽
f ′(x) = α f (x) + βg(x)

g′(x) = γ f (x) + δg(x),

then this approach does not work. Not all is lost, however. Write this
system in the form 󰂓y′ = A󰂓y,

󰀥
f ′(x)
g′(x)

󰀦

󰁿 󰁾󰁽 󰂀
󰂓y′

=

󰀥
α β

γ δ

󰀦

󰁿 󰁾󰁽 󰂀
A

󰀥
f (x)
g(x)

󰀦
,

󰁿 󰁾󰁽 󰂀
󰂓y

and suppose that there exists matrices P and D such that P is invertible,
D is diagonal, and A = PDP−1. Define a new variable by 󰂓z := P−1󰂓y, so
󰂓y = P󰂓z. Hence, the differential equation 󰂓y′ = A󰂓y becomes

d
dx

(P󰂓z) = A(P󰂓z) = (PDP−1)P󰂓z = PD󰂓z,

while the left-hand side simplifies to P󰂓z′. Multiplying both sides by P−1

yields the differential equation 󰂓z′ = D󰂓z, which is of the form we know
how to solve. Our desired solution is thus given by 󰂓y = P󰂓z.

So now we know theoretically how to solve systems of linear equations
of the form 󰂓y′ = A󰂓y, provided we can write A = PDP−1 for convenient
matrices P and D. We thus have the following questions:

Question B.1. When can we write A = PDP−1? Moreover, when we
can write A in this form, how do we compute P and D?

As you may already know from first-year linear algebra, the answer is
given by the theory of diagonalization. This is discussed in Section B.4
but we must first take a detour through the theory of eigenvalues and
eigenvectors.

B.3 Eigenvalues and eigenvectors

Definition B.2. Let A be a square matrix. An eigenpair (λ,󰂓v) of A
is a scalar λ and nonzero vector 󰂓v satisfying A󰂓v = λv. We say that λ is
an eigenvector of A with corresponding eigenvector 󰂓v.

An eigenvector of A is a vector 󰂓v such that A󰂓v is rescaling. From a
computational perspective, it is easier to compute a rescaling λ󰂓v com-
pared to a matrix-vector product, as fewer operations are needed.1 1 If you are interested in learning

about algorithms for linear algebra that
are more/less efficient, consider taking
Math 3NA3.

dynamical systems 25

Finding eigenvectors

Finding eigenpairs of a matrix A is a two-step process: we must first
find the eigenvalues of A and then find the corresponding eigenvectors
for each eigenvalue. We recall these processes, in the reverse order.

Example B.3. An eigenvalue of the following matrix is λ = 2.

A =

󰀵

󰀹󰀷
4 −1 6
2 1 6
2 −1 8

󰀶

󰀺󰀸

An eigenvector 󰂓v of A must satisfy A󰂓v = 2󰂓v, or equivalently, A󰂓v −
2󰂓v = 󰂓0. Rewrite this as (A − 2I)󰂓v = 󰂓0, we now have a system of We cannot write A − 2 because we can-

not subtract a scalar from a vector.
However, 2󰂓v = 2I󰂓v, where I is the iden-
tity matrix, so A󰂓v − 2󰂓v = A󰂓v − 2I󰂓v =
(A − 2I)󰂓v.

linear equations to solve which we can represent as an augmented matrix.
First, write

A − 2I =

󰀵

󰀹󰀷
4 −1 6
2 1 6
2 −1 8

󰀶

󰀺󰀸−

󰀵

󰀹󰀷
2 0 0
0 2 0
0 0 2

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
2 −1 6
2 −1 6
2 −1 6

󰀶

󰀺󰀸 .

Thus the system (A − 2I)󰂓v =󰂓0 can be written as the following aug-
mented matrix

󰀵

󰀹󰀷
2 −1 6 0
2 −1 6 0
2 −1 6 0

󰀶

󰀺󰀸

so we need only row reduce to find the eigenvector 󰂓v.
󰀵

󰀹󰀷
2 −1 6 0
2 −1 6 0
2 −1 6 0

󰀶

󰀺󰀸R2−2R1

R3−2R1

∼

󰀵

󰀹󰀷
2 −1 6 0
0 0 0 0
0 0 0 0

󰀶

󰀺󰀸

Eigenvectors 󰂓v =

󰀵

󰀹󰀷
v1

v2

v3

󰀶

󰀺󰀸 thus satisfy 2v1 = v2 − 6v3, or equivalently,

v1 = 1
2 v2 − 3v3. Because v2 and v3 are both free variables, eigenvectors

of A with eigenvalue 2 are of the form

󰂓v =

󰀵

󰀹󰀷
v1

v2

v3

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷

1
2 v2 − 3v3

v2

v3

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
1/2

1
0

󰀶

󰀺󰀸 v2 +

󰀵

󰀹󰀷
−3
0
1

󰀶

󰀺󰀸 v3

Hence eigenvectors of A with respect to λ = 2 are
󰀵

󰀹󰀷
1/2

1
0

󰀶

󰀺󰀸 and

󰀵

󰀹󰀷
−3
0
1

󰀶

󰀺󰀸 .

Notice that eigenvectors are not unique. We found these eigenvectors
by setting (i) v2 = 1 and v3 = 0, and (ii) v2 = 0 and v3 = 1 in the

26 math 2la3 course notes

previous equation for 󰂓v. For example, the following are also eigenvectors
for A with respect to λ = 2:

󰀵

󰀹󰀷
1
2
0

󰀶

󰀺󰀸 and

󰀵

󰀹󰀷
1
0

−1/3

󰀶

󰀺󰀸 .

Exercise 7. Exercises 9−15 from Chapter 5.1 of the course textbook
are similar to the previous example: they give you a matrix and its
eigenvalue(s), and ask you to compute the corresponding eigenvectors.
Complete as many of these problems as you need until you are comfort-
able computing eigenvectors. Check your answer(s) by verifying that
the equation A󰂓v = λ󰂓v holds.

Definition B.4. Let A be a square matrix with eigenvalue λ. The
eigenspace of A corresponding to λ is the set of vectors 󰂓v for which
A󰂓v = λ󰂓v. That is, it is the set of all eigenvectors corresponding to λ,
together with the zero vector.

Fix a square matrix A and one of its eigenvalues λ. Suppose that Recall that a list of vectors 󰂓v1, . . . ,󰂓vr
is linearly dependent if, for some
i, 󰂓vi can be expressed as a lin-
ear combination of the other vectors
󰂓v1, . . . ,󰂓vi−1,󰂓vi+1, . . . ,󰂓vr. A list of vec-
tors is linearly independent if it is
not linearly dependent.

In particular, two vectors are linearly
dependent if and only if one is a scalar
multiple of the other. Hence, a list of
two vectors is linearly independent if
neither is a scalar multiple of the other.

We will discuss linear independence
and bases more in Chapter C.

we find that 󰂓v1, . . . ,󰂓vr are linearly independent eigenvectors of A corre-
sponding to λ. Then, the eigenspace of A corresponding to λ is the set
of all linear combinations of 󰂓v1, . . . ,󰂓vr. We say that 󰂓v1, . . . ,󰂓vr is a basis
for the eigenspsace.

Example B.5. Continuing the previous example, a basis for the eigenspace
of A corresponding to λ = 2 is given by󰀵

󰀹󰀷
1/2

1
0

󰀶

󰀺󰀸 and

󰀵

󰀹󰀷
−3
0
1

󰀶

󰀺󰀸 .

Given a (square) matrix and an eigenvalue, we saw in the previous
example that to find corresponding eigenvectors, we need only perform
row reduction. We next turn our attention to the problem of finding
eigenvalues.

Finding eigenvalues

Recall that eigenvalues and eigenvectors satisfy A󰂓v = λ󰂓v, or equiva-
lently, (A − λI)󰂓v =󰂓0. Because eigenvectors 󰂓v are nonzero, the equation
(A − λI)󰂓v = 󰂓0 says that A − λI is a noninvertible matrix, because it
maps a nonzero vector to 󰂓0. Moreover, recall that any matrix B is non-
invertible if and only if its determinant is zero. So, to find eigenvalues,
we are required to find the λ such that

det(A − λI) = 0.

Because λ is an unknown, we treat it as a variable, so the expression
det(A − λI) is a polynomial in the variable λ. We call this polynomial
the characteristic polynomial of A.

dynamical systems 27

Thus to compute eigenvalues, we must first compute a determinant.
We review this process now, first with two special cases, followed by the
general formula.

Fact B.6. The determinant of a 2 × 2 matrix is given by

det

󰀥
a b
c d

󰀦
= ad − bc.

For a 3 × 3 matrix, there is a slightly more complicated formula. To
compute

det

󰀵

󰀹󰀷
a b c
d e f
g h k

󰀶

󰀺󰀸 ,

first repeat the first two columns as follows:󰀵

󰀹󰀷
a b c
d e f
g h k

󰀶

󰀺󰀸
a b
d e
g h

and compute the products corresponding to the diagonals,
aek, b f g, cdh

and corresponding to the antidiagonals,
ceg, a f h, bdk.

The determinant is the difference of these lists:

det

󰀵

󰀹󰀷
a b c
d e f
g h i

󰀶

󰀺󰀸 = aek + b f g + cdh − ceg − a f h − cdh.

Definition B.7. Let A be an n × n matrix. Denote by ai,j the (i, j)-th
entry of A, and denote by Ai,j the submatrix of A obtained by deleting
the i-th row and j-th column. Then, the determinant of A is given by
the following recursive formula,

det A =
n

∑
j=1

(−1)i+j ai,j det(Ai,j).

This is called the cofactor expansion of A along the i-th row. The
above formula gives the same answer for any row i = 1, . . . , n. Similarly,
we could instead compute the determinant using a cofactor expansion
along the j-th column, for any j = 1, . . . , n,

det A =
n

∑
i=1

(−1)i+j ai,j det(Ai,j).

Example B.8. We will compute the determinant of the 4 × 4 matrix

28 math 2la3 course notes

A =

󰀵

󰀹󰀹󰀹󰀷

1 −2 5 0
2 0 4 −1
3 1 0 7
0 4 −2 0

󰀶

󰀺󰀺󰀺󰀸
.

It is convenient to perform cofactor
expansions along rows/columns with
many zeros. Indeed, these zeros will ap-
pear as ai,j in the summation definition
of the determinant, meaning we will
have to compute fewer of the det(Ai,j).

We will perform a cofactor expansion along the fourth row. That is,
we will use the first formula above, with i = 4.

det A =
4

∑
j=1

(−1)4+j a4,j det(A4,j)

= (−1)4+1(0)det(A4,1) + (−1)4+2(4)det(A4,2)

+ (−1)4+3(−2)det(A4,3) + (−1)4+4(0)det(A4,4)

= 4

󰀏󰀏󰀏󰀏󰀏󰀏󰀏

1 5 0
2 4 −1
3 0 7

󰀏󰀏󰀏󰀏󰀏󰀏󰀏
+ 2

󰀏󰀏󰀏󰀏󰀏󰀏󰀏

1 −2 0
2 0 −1
3 1 7

󰀏󰀏󰀏󰀏󰀏󰀏󰀏

= 4
󰀅
(28 + (−15) + 0)− (0 + 0 + 70)

󰀆

− (−2)
󰀅
(0 + 6 + 0)− (0 + (−1) + (−28))

󰀆

= −228 + 70 = −158

Exercise 8. Compute det A for the same matrix as the previous exam-
ple using cofactor expansion along the fourth column. Verify that your
answer is the same.

We conclude this section with an eigenvalue-finding example, then
recall some other facts about eigenvalues and determinants.

Example B.9. We will find the eigenvalues of the matrix

A =

󰀵

󰀹󰀷
0 0 −2
1 2 1
1 0 3

󰀶

󰀺󰀸 .

The eigenvalues are the roots of the characteristic polynomial,

det(A − λI) = det

󰀳

󰁅󰁃

󰀵

󰀹󰀷
0 0 −2
1 2 1
1 0 3

󰀶

󰀺󰀸−

󰀵

󰀹󰀷
λ 0 0
0 λ 0
0 0 λ

󰀶

󰀺󰀸

󰀴

󰁆󰁄

= det

󰀵

󰀹󰀷
−λ 0 −2
1 2 − λ 1
1 0 3 − λ

󰀶

󰀺󰀸

=
󰀅
(−λ)(2 − λ)(3 − λ) + 0 + 0

󰀆

−
󰀅
(−2)(2 − λ) + 0 + 0

󰀆

= −λ3 + 5λ2 − 8λ + 4

= −(λ − 1)(λ − 2)2.

dynamical systems 29

So the eigenvalues are the roots: λ = 1 and λ = 2. The steps were not shown, but poly-
nomial long division was used to factor
out the root at λ = 1. Then, we no-
ticed that the remaining quadratic was
a perfect square.

Finding eigenvalues is difficult, because finding roots of polynomials
can be difficult. Fortunately, in some special cases, we can find the
eigenvalues without any computation.

Exercise 9. If A is a 3 × 3 triangular matrix (either lower or upper
triangular), show that the eigenvalues of A are exactly its diagonal en-
tries. Convince yourself that the result holds for a triangular matrix of
any size.

We also have the following.

Fact B.10. The determinant of a matrix is equal to the product of its
eigenvalues. The sum of the eigenvalues is the trace of the matrix.

B.4 Matrix decomposition: Diagonalization

Recall that in Section B.2 we asked: Given a matrix A, when is it pos-
sible to write A = PDP−1 for some invertible matrix P and diagonal
matrix D? When such matrices P and D exist, we say that A is diag-
onalizable. The following theorem tells us exactly when the matrix A More generally, matrices A and B are

similar if there is an invertible matrix
P such that A = PBP−1. So the matrix
A is diagonalizable if it is similar to a
diagonal matrix.

Matrices that are similar represent
the same linear transformation, just
with respect to different coordinate
systems. The matrix P is giving
the change of coordinates to go from
one linear transformation to the other.
Loosely, P is performing a combination
of stretches and rotations to go between
coordinate systems.

is diagonalizable.

Theorem B.11. An n × n matrix is diagonalizable if and only if it has
n linearly independent eigenvectors.

If such eigenvectors exist, then they form the columns of P and the
corresponding eigenvalues form the entries of D.

Recall from first-year linear algebra that a list of vectors 󰂓v1, . . . ,󰂓vr

is linearly independent if no vector in the list can be written as a
linear combination of the other vectors. For example, two vectors 󰂓v,󰂓u
are linearly independent neither is a scalar multiple of the other.

Exercise 10. Give an example of three vectors in R3 that are linearly
independent, and three that are linearly dependent. Can you find a list
of four linearly independent vectors in R3? Lastly, show that any list
containing the zero vector is linearly dependent.

Proof of Theorem B.11. First suppose A is diagonalizable, so A = PDP−1,
or equivalently, AP = PD. Write:

P =

󰀵

󰀹󰀷
| | |
󰂓v1 󰂓v2 · · · 󰂓vn

| | |

󰀶

󰀺󰀸 ,

so the vectors 󰂓v1, . . . ,󰂓vn form the columns of P. We then compute both
AP and PD.

AP = A

󰀵

󰀹󰀷
| | |
󰂓v1 󰂓v2 · · · 󰂓vn

| | |

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
| | |

A󰂓v1 󰂓Av2 · · · 󰂓Avn

| | |

󰀶

󰀺󰀸

30 math 2la3 course notes

PD =

󰀵

󰀹󰀷
| | |
󰂓v1 󰂓v2 · · · 󰂓vn

| | |

󰀶

󰀺󰀸

󰀵

󰀹󰀹󰀹󰀹󰀷

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

󰀶

󰀺󰀺󰀺󰀺󰀸
=

󰀵

󰀹󰀷
| | |

λ1󰂓v1 λ2󰂓v2 · · · λn󰂓vn

| | |

󰀶

󰀺󰀸 .

Because AP = PD, comparing the above two equations column-by-col-
umn tells us that A󰂓vi = λi󰂓vi for each i = 1, . . . , n. Hence each λi is
an eigenvalue with eigenvector 󰂓vi. Each 󰂓vi is nonzero because P was
assumed to be invertible.2 Moreover, the eigenvectors 󰂓v1, . . . ,󰂓vn are lin- 2 A matrix with a row/column of ze-

ros must have determinant zero. In-
deed, perform cofactor along that
row/column. Thus, a matrix with a
row or column of all zeros cannot be
invertible.

early independent, again, because P is invertible. (See the Invertible
Matrix Theorem in the course textbook.)

Now we will assume that A has n linearly independent eigenvectors
and we will show that A is diagonalizable. Denote by 󰂓v1, . . . ,󰂓vn the
linearly independent eigenvectors. Construct a matrix P whose columns
are the eigenvectors 󰂓vi,

P =

󰀵

󰀹󰀷
| | |
󰂓v1 󰂓v2 · · · 󰂓vn

| | |

󰀶

󰀺󰀸 ,

and diagonal matrix whose entries are the corresponding eigenvalues,

D =

󰀵

󰀹󰀹󰀹󰀹󰀷

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn.

󰀶

󰀺󰀺󰀺󰀺󰀸

Notice that the eigenvalues in the list λ1, . . . , λn may appear with rep-
etition. Then, to show that A = PDP−1, it is equivalent to show that
AP = PD. Indeed,

AP = A

󰀵

󰀹󰀷
| | |
󰂓v1 󰂓v2 · · · 󰂓vn

| | |

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
| | |

A󰂓v1 A󰂓v2 · · · A󰂓vn

| | |

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
| | |

λ1󰂓v1 λ2󰂓v2 · · · λn󰂓vn

| | |

󰀶

󰀺󰀸

=

󰀵

󰀹󰀷
| | |
󰂓v1 󰂓v2 · · · 󰂓vn

| | |

󰀶

󰀺󰀸

󰀵

󰀹󰀹󰀹󰀹󰀷

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn.

󰀶

󰀺󰀺󰀺󰀺󰀸
= PD.

󰃈

This theorem says that to diagonalize a matrix, we need to compute
the corresponding eigenvalues and eigenvectors to construct D and P,
respectively. We next recall a sufficient condition for a matrix to be
diagonalizable. The converse to this corollary is false!

An n × n matrix may be diagonalizable
even if it does not have n eigenvalues.Corollary B.12. If an n × n matrix has n distinct eigenvalues, then it

is diagonalizable.

dynamical systems 31

Proof. Eigenvectors corresponding to distinct eigenvalues are linearly
independent. Having n distinct eigenvalues thus implies that we have n
linearly independent eigenvalues, so apply Theorem B.11. 󰃈

Our original motivation for diagonalization was to solve dynamical
systems. Let us recall this process, then work through an example of This process is called decoupling, as

we rewrite the system in such a way
that each differential equation is inde-
pendent from the other.

diagonalization to solve a dynamical system. The same procedure works
for larger (e.g., 3 × 3) systems as well.

Diagonalization for solving dynamical systems.
Consider the dynamical system represented as󰀻

󰀿

󰀽
f ′(x) = α f (x) + βg(x)

g′(x) = γ f (x) + δg(x).

1. Write the system in the form 󰂓y′ = A󰂓y, where
󰀥

f ′(x)
g′(x)

󰀦

󰁿 󰁾󰁽 󰂀
󰂓y′

=

󰀥
α β

γ δ

󰀦

󰁿 󰁾󰁽 󰂀
A

󰀥
f (x)
g(x)

󰀦
.

󰁿 󰁾󰁽 󰂀
󰂓y

2. Diagonalize A, if possible, writing A = PDP−1. (If this is not
possible, then we cannot solve the dynamical system using
diagonalization.)

3. Define a new variable 󰂓z = P−1󰂓y, so 󰂓y = P󰂓z. The differential
equation 󰂓y′ = A󰂓y becomes

d
dx

(P󰂓z) = A(P󰂓z) = (PDP−1)P󰂓z = PD󰂓z.

The left-hand side is P󰂓z′, so after multiplying both sides by
P−1, the system 󰂓y′ = A󰂓y has become

󰂓z′ = D󰂓z.

4. Solve the system 󰂓z′ = D󰂓z.

5. Substitute 󰂓y = P󰂓z to solve the original system.

Example B.13. Suppose that the populations of rabbits and wolves
can be modelled over time with by the following system of differential
equations: 󰀻

󰀿

󰀽
R′(t) = −2R(t)− 5W(t)

W ′(t) = 1R(t) + 4W(t).

We will find explicit equations for R(t) and W(t), given the initial con-
ditions R(0) = 100 and W(0) = 4.

32 math 2la3 course notes

First, write the system in matrix form,󰀥
R′(t)
W ′(t)

󰀦
=

󰀥
−2 −5
1 4

󰀦 󰀥
R(t)
W(t)

󰀦
,

so󰂓y =

󰀥
R(t)
W(t)

󰀦
and A =

󰀥
−2 −5
1 4

󰀦
. We start by finding the eigenvalues

and eigenvectors of A. For the eigenvalues, we compute the character-
istic polynomial:

det(A − λI) = det

󰀥
−2 − λ −5

1 4 − λ

󰀦

= (−2 − λ)(4 − λ) + 5

= λ2 − 2λ − 8 + 5

= λ2 − 2λ − 3

= (λ − 3)(λ + 1).

So the eigenvalues are λ = 3 and λ = −1. We next compute corre-
sponding eigenvectors.

• [λ = 3] Eigenvectors are the solutions to the system (A − 3I)󰂓v =󰂓0.
󰀥
−5 −5 0
1 1 0

󰀦
∼

󰀥
1 1 0
0 0 0

󰀦

Hence, eigenvectors 󰂓v =

󰀥
v1

v2

󰀦
corresponding to λ = 3 satisfy v1 =

−v2. So, an eigenvector is

󰂓v =

󰀥
−1
1

󰀦
.

• [λ = −1] Eigenvectors are the solutions to the system (A+ 1I)󰂓v =󰂓0.
󰀥
−1 −5 0
1 5 0

󰀦
∼

󰀥
1 5 0
0 0 0

󰀦
.

Hence, eigenvectors 󰂓u =

󰀥
u1

u2

󰀦
corresponding to λ = −1 satisfy u1 =

−5u2. So, an eigenvector is

󰂓u =

󰀥
−5
1

󰀦
.

We thus construct Recall that the columns of P are the
eigenvectors. Moreover, they must ap-
pear in the same order as their corre-
sponding eigenvalues appear in D.

D =

󰀥
3 0
0 −1

󰀦
, and P =

󰀥
−1 −5
1 1

󰀦
.

We now introduce our new variable 󰂓z = P−1󰂓y and corresponding

decoupled system 󰂓z′ = D󰂓z. Write 󰂓z =

󰀥
f (t)
g(t)

󰀦
, so we have the system Notice that we never actually need to

compute the inverse of P!

dynamical systems 33

󰀻
󰀿

󰀽
f ′(t) = 3 f (t)

g′(t) = −g(t)
which implies

󰀻
󰀿

󰀽
f (t) = c1e3t

g(t) = c2e−t.

Then, 󰂓y = P󰂓z, so
󰀥

R(t)
W(t)

󰀦
=

󰀥
−1 −5
1 1

󰀦 󰀥
c1e3t

c2e−t

󰀦
=

󰀥
−c1e3t − 5c2e−t

c1e3t + c2e−t

󰀦
.

If we were not given initial conditions,
then we would be done. Our final an-
swer would be R(t) = −c1e3t − 5c2e−t

and W(t) = c1e3t + c2e−t.

The last step is to impose the additional given conditions that R(0) =
100 and W(0) = 4. Substituting these conditions yields the system

󰀥
R(0)
W(0)

󰀦
=

󰀥
100

4

󰀦
=

󰀥
−c1 − 5c2

c1 + c2

󰀦
,

which we can solve using an augmented matrix as follows.
󰀥
−1 −5 100
1 1 4

󰀦

R2+R1
∼

󰀥
−1 −5 100
0 −4 104

󰀦
−R1

− 1
4 R2

∼
󰀥

1 5 −100
0 1 −26

󰀦
R1−5R2 ∼

󰀥
1 0 30
0 1 −26

󰀦
.

So the solution to our system is󰀻
󰀿

󰀽
R(t) = −30e3t + 130e−t

W(t) = 30e3t − 26e−t.

Exercise 11. Suppose that a trio of populations are modelled by the
differential equations󰀻

󰁁󰁁󰀿

󰁁󰁁󰀽

x′(t) = −x(t) + 4y(t)− 2z(t)

y′(t) = −3x(t) + 4y(t)

z′(t) = −3x(t) + y(t) + 3z(t),

with initial conditions
x(0) = 1, y(0) = 2, z(0) = 3.

Use diagonalization to solve the differential equations.

C
Minimizing Distance

Suppose that we are given a matrix A and a vector 󰂓b for which there
is no solution 󰂓x to the equation A󰂓x = 󰂓b. Since we are unable to find a In general, when does A󰂓x =󰂓b have so-

lutions? How does this change if A is a
square matrix versus a rectangular ma-
trix?

solution, we can cut our losses and instead ask for the vector 󰂓x that best
approximates A󰂓x ≈󰂓b.

To make this precise, let us denote by 󰀂 · 󰀂 the length of a vector.
So, if A󰂓x = 󰂓b, then A󰂓x −󰂓b = 󰂓0, and 󰀂A󰂓x −󰂓b󰀂 = 󰀂󰂓0󰀂 = 0. But if no
solution exists, then we want to find the 󰂓x that minimizes the distance
between A󰂓x and 󰂓b. That is, we want to find the following:

min
󰂓x∈Rn

󰁱
󰀂A󰂓x −󰂓b󰀂

󰁲
.

Definition C.1. The vector 󰂓v for which 󰀂A󰂓v −󰂓b󰀂 ≤ 󰀂A󰂓x −󰂓b󰀂 for all
other 󰂓x is called a least squares solution to the system A󰂓x =󰂓b.

C.1 Dot product and distance

To find our solution to the problem discussed above, we first need to
make rigorous what we mean by a "distance". The way we do this is via
the dot product, which will also allow us discuss angles and orthogonality.
These topics should be familiar from first-year linear algebra, so we will
be brief.

The dot product

Let 󰂓x and 󰂓y be vectors in Rn, writing

󰂓x =

󰀵

󰀹󰀹󰀹󰀹󰀷

x1

x2
...

xn

󰀶

󰀺󰀺󰀺󰀺󰀸
, and 󰂓y =

󰀵

󰀹󰀹󰀹󰀹󰀷

y1

y2
...

yn

󰀶

󰀺󰀺󰀺󰀺󰀸
.

36 math 2la3 course notes

The dot product of 󰂓x and 󰂓y is

󰂓x ·󰂓y = 󰂓x T󰂓y =
󰁫

x1 x2 · · · xn

󰁬

󰀵

󰀹󰀹󰀹󰀹󰀷

y1

y2
...

yn

󰀶

󰀺󰀺󰀺󰀺󰀸
= x1y1 + x2y2 + · · ·+ xnyn.

Notice that 󰂓x · 󰂓x = x2
1 + x2

2 + · · · + x2
n so 󰂓x · 󰂓x ≥ 0 for all vectors

󰂓x ∈ Rn and, in particular, 󰂓x ·󰂓x = 0 if and only if 󰂓x = 󰂓0. We have the
following.

Fact C.2 (Properties of the dot product). Let 󰂓x,󰂓y,󰂓z be vectors in Rn

and c ∈ R a scalar. Then,

(i) 󰂓x ·󰂓x ≥ 0 and 󰂓x ·󰂓x = 0 if and only if 󰂓x = 0,
(ii) 󰂓x ·󰂓y = 󰂓y ·󰂓x,
(iii) (󰂓x +󰂓y) ·󰂓z = 󰂓x ·󰂓z +󰂓y ·󰂓z,
(iv) c(󰂓x ·󰂓y) = (c󰂓x) ·󰂓y = 󰂓x · (c󰂓y).

Exercise 12. Show that Fact C.2 holds for vectors in R2.

Norms

A norm is a function that measures distance. Recall that the distance
between two points (and hence, between two vectors) 󰂓x = (x1, . . . , xn)

and 󰂓y = (y1, . . . , yn) is given by

dist(󰂓x,󰂓y) =
󰁴
(x1 − y1)2 + · · ·+ (xn − yn)2.

Meanwhile, notice that

󰂓x −󰂓y =

󰀵

󰀹󰀹󰀹󰀷

x1 − y1

x2 − y2

· · ·
xn − yn

󰀶

󰀺󰀺󰀺󰀸
,

so the expression beneath the square root in the formula for dist(󰂓x,󰂓y)
looks like the dot product (󰂓x −󰂓y) · (󰂓x −󰂓y). That is,

dist(󰂓x,󰂓y) =
󰁴
(󰂓x −󰂓y) · (󰂓x −󰂓y).

Because the dot product is always nonnegative, it makes sense to take
a square root. We call the quantity dist(󰂓x,󰂓y) the norm of the vector
󰂓x −󰂓y and write

󰀂󰂓x −󰂓y󰀂 = dist(󰂓x,󰂓y) =
󰁴
(󰂓x −󰂓y) · (󰂓x −󰂓y).

This also allows us to compute the norm of a single vector. Indeed,
notice that the length of a vector is 󰀂󰂓x󰀂 = 󰀂󰂓x −󰂓0󰀂, so we have that

󰀂󰂓x󰀂 =
√
󰂓x ·󰂓x.

You may remember that one interpre-
tation of the dot product is a measure
of angle. Indeed, in R2 and R3, the an-
gle between 󰂓u and 󰂓v is

θ = arccos
󰀕

󰂓u ·󰂓v
󰀂󰂓u󰀂󰀂󰂓v󰀂

󰀖
.

minimizing distance 37

Exercise 13. Let 󰂓x =

󰀥
1
1

󰀦
. Compute 󰀂󰂓x󰀂. Find a vector 󰂓y ∈ R2 which

is distance 1 away from 󰂓x. Find a vector 󰂓z ∈ R2 that is distance
√

2
away from 󰂓x.

C.2 Subspaces and bases

Recall that our goal for Chapter C is to find the least squares solution
vector 󰂓x that minimizes the norm 󰀂A󰂓x −󰂓b󰀂 for fixed A and 󰂓b. The
purpose of this subsection is to reformulate this problem in a way that
is more conducive to computations. To that end, we develop a little bit
of linear algebra theory in this section and Section C.3, before coming
to our solution in Section C.4.

So fix some matrix A and vector 󰂓b, with a view towards finding the
󰂓x that best approximates A󰂓x ≈󰂓b. Write A and 󰂓x as follows: Here, we are taking A to be an m × n

matrix, meaning it has m rows and n
columns. This means that 󰂓x is an n × 1
matrix and 󰂓b is an m × 1 matrix.

A =

󰀵

󰀹󰀷
| | |
󰂓v1 󰂓v2 · · · 󰂓vn

| | |

󰀶

󰀺󰀸 , 󰂓x =

󰀵

󰀹󰀹󰀹󰀹󰀷

c1

c2
...

cn

󰀶

󰀺󰀺󰀺󰀺󰀸
,

where the vectors 󰂓vi are the column vectors of A, and the ci are real
numbers, the components of 󰂓x. Then, the product A󰂓x can be computed
as follows:

A󰂓x =

󰀵

󰀹󰀷
| | |
󰂓v1 󰂓v2 · · · 󰂓vn

| | |

󰀶

󰀺󰀸

󰀵

󰀹󰀹󰀹󰀹󰀷

c1

c2
...

cn

󰀶

󰀺󰀺󰀺󰀺󰀸
= c1󰂓v1 + c2󰂓v2 + · · ·+ cn󰂓vn.

Thus, for any 󰂓x ∈ Rn, the vector A󰂓x is a linear combination of the
columns of A.

The span of a list of vectors is the set of all linear combinations of
these vectors. For instance, given a matrix A as above, the span of its
columns is the set of vectors of the form

a1󰂓v1 + · · ·+ an󰂓vn,

for any scalars a1, . . . , an ∈ R. Because, in this example, the vectors are
the columns of a matrix, we call this the column span of A. We denote
by col(A) the column span of A.

Example C.3. The span of the vector (2, 1) in R2 is the set of all
vectors of the form λ(2, 1) = (1λ, λ). Geometrically, it is the set of all
scalar multiples of the vector (2, 1), or equivalently, any element on the
line in Figure C.1.

38 math 2la3 course notes

x

y

(2, 1)

Figure C.1: The set of vectors of the
form (2λ, λ) in R2.

Fix two vectors 󰂓u1 and 󰂓u2 in the span of 󰂓v1, . . . ,󰂓vn, writing

󰂓u1 = a1󰂓v1 + a2󰂓v2 + · · ·+ an󰂓vn,

󰂓u2 = b1󰂓v1 + b2󰂓v2 + · · ·+ bn󰂓vn.

Notice that the sum 󰂓u1 + 󰂓u2 is also in the span of 󰂓v1, . . . ,󰂓vn, because:

󰂓u1 + 󰂓u2 = a1󰂓v1 + a2󰂓v2 + · · ·+ an󰂓vn

+ b1󰂓v1 + b2󰂓v2 + · · ·+ bn󰂓vn

= (a1 + b1)󰂓v1 + (a2 + b2)󰂓v2 + · · ·+ (an + bn)󰂓vn,

so 󰂓u1 + 󰂓u2 is a linear combination of 󰂓v1, . . . ,󰂓vn. Similarly, if k ∈ R is
any scalar, then,

k󰂓u1 = k(a1󰂓v1 + · · ·+ an󰂓vn) = (ka1)󰂓v1 + · · ·+ (kan)󰂓vn,

so scalar multiplication remains within the span. This tells us that the
span of a fixed collection of vectors is a special type of subset.

Definition C.4. A subset S of Rm is called a vector subspace if it
is closed under vector addition, closed under scalar multiplication, and
contains the zero vector.

That is, S is a subspace if:

(i) 󰂓0 ∈ S,
(ii) if 󰂓u1 and 󰂓u2 are in S, then so is 󰂓u1 + 󰂓u2,
(iii) if 󰂓u ∈ S and k ∈ R, then k󰂓u is also in S.

We thus have the following.

Fact C.5. The column span of a matrix is a vector subspace.

Proof. Let A be an m × n matrix. The column span is a subset of Rm

and we showed early it is closed under vector addition and closed under
scalar multiplication. It also contains the zero vector because, if the
columns of A are 󰂓v1, . . . ,󰂓vn, then 0󰂓v1 + · · ·+ 0󰂓vn = 󰂓0 is an element of
the column span. 󰃈

minimizing distance 39

Any subspace of Rm can be viewed as the span of a finite list of
vectors. However, not all spanning lists are created equal.

For example, consider the subspace S of R2 consisting of vectors of
the form (x, x).1 This set can be viewed as the span of (1, 1), but it 1 The set S is a subspace because it

contains the zero vector and is closed
under vector addition and scalar mul-
tiplication. Indeed, (x, x) + (y, y) =
(x + y, x + y) and k(x, x) = (kx, kx).

can also be viewed as the span of (1, 1) and (2, 2). The second list is
less desirable because it is not minimal; the vector (2, 2) is not telling us
any new information. The following defines a "good" spanning set for a
subspace.

Definition C.6. Let S be a subspace of Rm. A basis for S is a linearly
independent list of vectors whose span is S.

Example C.7. Let S be the subspace of R2 of points of the form (x, x).
We saw earlier that (1, 1), (2, 2) is not a basis of S because the list
(1, 1), (2, 2) is linearly dependent. However, the list (1, 1) is linearly
dependent and spans S, hence it is a basis of S.

The list (1, 0, 0), (0, 1, 0), (0, 0, 1) is called the standard basis of R3.

Exercise 14. Find a basis of R3 that is not the standard basis. Find a
list of vectors that spans R3 but is not linearly independent. Then find
a list of vectors in R3 that is linearly independent but whose span is not
R3. Then look back at Exercise 10.

You should recall from first-year lin-
ear algebra how to find a basis for the
column space of a given matrix. If you
want to review, here is a video expla-
nation for the column space, or you can
see Chapter 4.2 of the course textbook.

Exercise 15. Find a basis for the column span of the following matrices.

A =

󰀵

󰀹󰀷
1 1 0
1 0 1
0 1 1

󰀶

󰀺󰀸 B =

󰀵

󰀹󰀹󰀹󰀷

1 0 0 1
1 0 1 0
0 1 0 1
0 0 1 −1

󰀶

󰀺󰀺󰀺󰀸

C.3 Orthonormal bases and Gram-Schmidt

In this section, we continue developing the theory needed for our ap-
proximation question A󰂓x ≈ 󰂓b. Intuitively, we will say that two vectors
are orthogonal if their intersection forms a right-angle. Formally, we say
the following.

Definition C.8. Vectors 󰂓u and 󰂓v are orthogonal if 󰂓u ·󰂓v = 0.

For instance, notice that (1, 0) and (0, 1) are orthogonal because
(1, 0) · (0, 1) = (1)(0) + (0)(1) = 0.

Exercise 16. Show that the vector (x, x) is orthogonal to (y,−y), for
any values of x and y. Also, sketch these two vectors to convince yourself
that they always intersect at a right angle.

Do you see how this theorem general-
izes the usual Pythagorean Theorem?
Draw a picture!

Theorem C.9 (Pythagoras). Suppose that 󰂓u and 󰂓v are orthogonal.
Then, 󰀂󰂓u +󰂓v󰀂2 = 󰀂󰂓u󰀂2 + 󰀂󰂓v󰀂2.

https://www.youtube.com/playlist?list=PLw3IGTeurXX_aAz8GruMaHyK86fxi1C6C

40 math 2la3 course notes

Proof. 󰀂󰂓u +󰂓v󰀂2 = (󰂓u +󰂓v) · (󰂓u +󰂓v) = 󰀂󰂓u󰀂2 + 2(󰂓u ·󰂓v) + 󰀂󰂓v󰀂2 and 󰂓u and
󰂓v are orthogonal, so 󰂓u ·󰂓v = 0. 󰃈

In the previous section, we saw that not all spanning lists of subspaces
are created equal: some are bases, while some are not. It turns out that
not every basis is created equal either. Here are two even nicer types of
bases.

Definition C.10. Let S be a subspace of Rm. A basis 󰂓v1, . . . ,󰂓vn of S is
called an orthogonal basis of S if 󰂓vi and 󰂓vj are orthogonal, for every
i ∕= j. Moreover, a basis 󰂓v1, . . . ,󰂓vn of S is called an orthonormal basis
of S if it is both an orthogonal basis and 󰀂vi󰀂 = 1 for every i.

Exercise 17. The standard basis of R2, consisting of the vectors (1, 0)
and (0, 1) is an orthonormal basis. Find:
• a basis of R2 that is not orthogonal;
• an orthogonal basis of R2 that is not orthonormal;
• an orthonormal basis of R2 that is not the standard basis.

Fix a nonzero vector 󰂓v ∈ Rn. Given any other vector 󰂓u in Rn, we
wish to write 󰂓u = k󰂓v+ 󰂓w where 󰂓v and 󰂓w are orthogonal and k is a scalar.
This is called an orthogonal decomposition of 󰂓u.

Proposition C.11. As above, let 󰂓u and 󰂓v be vectors in Rn with 󰂓v
nonzero. Then, 󰂓u = k󰂓v + 󰂓w, where 󰂓v and 󰂓w are orthogonal, when:

k =
󰂓u ·󰂓v
󰀂󰂓v󰀂2 and 󰂓w = 󰂓u − k󰂓v

Proof. Because 󰂓w = 󰂓u − k󰂓v, we have that 󰂓u = k󰂓v + 󰂓w as desired. So we
need only show that 󰂓v and 󰂓w are orthogonal. We compute:

󰂓v · 󰂓w = 󰂓v · (󰂓u − k󰂓v) = 󰂓v · 󰂓u − k(󰂓v ·󰂓v) = 󰂓v · 󰂓u − k󰀂󰂓v󰀂2.

Then, by definition of k, we have

󰂓v · 󰂓w = 󰂓v · 󰂓u − 󰂓u ·󰂓v
󰀂󰂓v󰀂2 󰀂󰂓v󰀂

2 = 󰂓v · 󰂓u − 󰂓u ·󰂓v = 0,

where we use the fact that 󰂓x ·󰂓y = 󰂓y ·󰂓x for all vectors 󰂓x and 󰂓y. 󰃈

In fact, we can generalize the previous theorem as follows. Although
these results may seem rather abstract at the moment, they will play a
key role in answering our minimization problem.

Theorem C.12. Let S be a subspace of Rn. Any vector 󰂓u of Rn can be
written in the form 󰂓u = 󰂓v + 󰂓w where 󰂓v ∈ S and 󰂓v · 󰂓w = 0.

Moreover, if 󰂓v1, . . . ,󰂓vm is an orthonormal basis of S, then 󰂓v and 󰂓w
are given by

󰂓v = (󰂓u ·󰂓v1)v1 + (󰂓u ·󰂓v2)v2 + · · ·+ (󰂓u ·󰂓vm)vm and 󰂓w = 󰂓u −󰂓v.

minimizing distance 41

In this case, we call 󰂓v the projection of 󰂓u onto S. We will write
󰂓v = projS(󰂓u). It turns out that the vector in S that is closest to 󰂓u is
projS(󰂓u), but we are not yet ready to show this. We proceed as follows:
Next, we will show that Theorem C.12 is true. Then, we will show that
given a subspace, we can always find an orthogonal basis, so we can
always apply Theorem C.12. Then, in Section C.4, we will prove the
minimization result.

Proof. As before, our choice of 󰂓w guarantees that 󰂓u = 󰂓v + 󰂓w, so it
remains to show that 󰂓v · 󰂓w = 0. We will first show that 󰂓vi · 󰂓w = 0 for
each i. Indeed, for i = 1 we have

󰂓v1 · 󰂓w = 󰂓v1 · (󰂓u −󰂓v)

= 󰂓v1 ·
󰀗
󰂓u −

󰀕
󰂓u ·󰂓v1

󰀂v1󰀂2 v1 +
󰂓u ·󰂓v2

󰀂󰂓v2󰀂2 v2 + · · ·+ 󰂓u ·󰂓vm

󰀂󰂓vm󰀂2 vm

󰀖󰀘

= 󰂓v1 · 󰂓u −
󰀕
󰂓u ·󰂓v1

󰀂v1󰀂2

󰀖
(󰂓v1 ·󰂓v1)−

󰀕
󰂓u ·󰂓v2

󰀂v2󰀂2

󰀖
(󰂓v1 ·󰂓v2)− · · ·−

󰀕
󰂓u ·󰂓vm

󰀂vm󰀂2

󰀖
(󰂓v1 ·󰂓vm).

Because 󰂓v1, . . . ,󰂓vm is an orthogonal list, we have 󰂓vi ·󰂓vj = 0 for all i ∕= j.
Also, recall that 󰂓v1 ·󰂓v1 = 󰀂v1󰀂2. Hence, the above simplifies to

󰂓v1 · 󰂓w = 󰂓v1 · 󰂓u − 󰂓u ·󰂓v1 = 0.

A similar argument shows that 󰂓vi · 󰂓w = 0 for all i. This then implies
that 󰂓v · 󰂓w = 0, as you should show. 󰃈

Exercise 18. In the above proof, show that 󰂓v · 󰂓w = 0. Your argument
will be similar to the argument to conclude that 󰂓v1 · 󰂓w = 0 and you
should make use of properties of the dot product, listed in Fact C.2.

We conclude this section with Gram-Schmidt, a procedure to find an
orthonormal basis for any given subspace.2 2 The Gram-Schmidt procedure pre-

sented here is a little different to the
textbook's. The difference is that the
version presented here returns an or-
thonormal basis, while the textbook's
returns only an orthogonal basis.

Theorem C.13 (Gram-Schmidt). Let S be a subspace of Rn with
basis 󰂓b1, . . . ,󰂓bm. An orthonormal basis 󰂓v1, . . . ,󰂓vm of S is given by
󰂓v1 =󰂓b1/󰀂b1󰀂 and, for i ≥ 2,

󰂓vi =
󰂓bi − (󰂓bi ·󰂓v1)󰂓v1 − (󰂓bi ·󰂓v2)󰂓v2 − · · ·− (󰂓bi ·󰂓vi−1)󰂓vi−1󰀐󰀐󰀐󰂓bi − (󰂓bi ·󰂓v1)󰂓v1 − (󰂓bi ·󰂓v2)󰂓v2 − · · ·− (󰂓bi ·󰂓vi−1)󰂓vi−1

󰀐󰀐󰀐

=
󰂓bi − projspan(󰂓v1,...,󰂓vi−1)

󰂓bi󰀐󰀐󰀐󰂓bi − projspan(󰂓v1,...,󰂓vi−1)
󰂓bi

󰀐󰀐󰀐
.

That is, span(󰂓v1, . . . ,󰂓vm) = span(󰂓b1, . . . ,󰂓bm) and 󰂓vi ·󰂓vj = 0 for all i ∕= j.

The idea behind the Gram-Schmidt process is to repeatedly apply the
orthogonal decompositions from Proposition C.11 and Theorem C.12 to
transform a given basis into an orthonormal one. The wikipedia page for
Gram-Schmidt includes an animation of the procedure at work, which
you should watch.

https://en.wikipedia.org/wiki/Gram-Schmidt_process#The_Gram-Schmidt_process

42 math 2la3 course notes

Exercise 19 (Optional). Use induction to prove Gram-Schmidt.

C.4 Closest vector to a subspace

Theorem C.12 tells us that if we fix a subspace S of Rn and a vector 󰂓u
of Rn, then we can find vectors 󰂓v and 󰂓w such that:

• 󰂓u = 󰂓v + 󰂓w,
• 󰂓v ∈ S,
• 󰂓v and 󰂓w are orthogonal.

It turns out that this gives us everything we need to solve our minimiza-
tion problem.

Theorem C.14 (Best approximation to a subspace). Let S be a subspace
of Rn. Fix a vector 󰂓u of Rn. The orthogonal projection 󰂓v = projS(󰂓u) is
the vector in S closest to 󰂓u. That is, for any 󰂓y ∈ S with 󰂓y ∕= 󰂓v,

󰀂󰂓u −󰂓v󰀂 < 󰀂󰂓u −󰂓y󰀂.

Remark C.15. Recall that our original problem was: Given a matrix
A and vector 󰂓b for which the system A󰂓x =󰂓b has no solutions, find the
vector 󰂓v for which A󰂓v best approximates󰂓b. The above theorem produces
the vector 󰂓y ∈ col(A) that minimizes 󰀂󰂓b −󰂓y󰀂. Because 󰂓y ∈ col(A), we
can then solve the system A󰂓x = 󰂓y for 󰂓x. This 󰂓x will satisfy our desired
minimization problem.

In Section C.5, we will see how QR factorization can help us answer
the minimization problem in one step.

To compute this projection, or equivalently, to apply Theorem C.12,
we first need an orthonormal basis for col(A). So, we have the following
procedure.

Best approximation for systems A󰂓x =󰂓b with no solutions.

1. Find a basis for col(A).
2. Apply Gram Schmidt (Theorem C.13) to transform this into

an orthonormal basis for col(A).
3. Use this orthonormal basis and Theorem C.12 to find the or-

thogonal projection of 󰂓b onto col(A).

Theorem C.14 says that this projection is the vector in col(A)

that is closest to 󰂓b.

Proof of Theorem C.14. We already know that 󰂓v is in S, because it is
defined as the projection of 󰂓u onto S. So we need only show that if
󰂓x ∈ W satisfies 󰂓x ∕= 󰂓v, then 󰀂󰂓u −󰂓v󰀂 < 󰀂󰂓u − x󰀂.

minimizing distance 43

So suppose that 󰂓x is in S and is distinct from 󰂓v. We first claim that
(󰂓u − 󰂓v) · (󰂓v − 󰂓x) = 0. Indeed, 󰂓v − 󰂓x is in S and 󰂓u − 󰂓v is orthogonal
to every vector in S. We then apply the Pythagorean Theorem (Theo-
rem C.9) to compute that:

󰀂󰂓u −󰂓x󰀂2 = 󰀂(󰂓u −󰂓v) + (󰂓v −󰂓x)󰀂2 = 󰀂󰂓u −󰂓v󰀂2 + 󰀂󰂓v −󰂓x󰀂2.

Since 󰂓x ∕= 󰂓v, we have that 󰀂󰂓v −󰂓x󰀂 > 0, so we conclude that

󰀂󰂓u −󰂓x󰀂2 = 󰀂󰂓u −󰂓v󰀂2 + 󰀂󰂓v −󰂓x󰀂2 > 󰀂󰂓u −󰂓v󰀂2,

as desired. 󰃈

Example C.16. We will find the vector 󰂓v in R3 that best approximates
A󰂓v ≈󰂓b for

A =

󰀵

󰀹󰀷
1 0

√
2

0 1/
√

2 2
0 1/

√
2 2

󰀶

󰀺󰀸 and 󰂓b =

󰀵

󰀹󰀷
1
2
3

󰀶

󰀺󰀸 .

An orthonormal basis for col(A) is given by

󰂓c1 =

󰀵

󰀹󰀷
1
0
0

󰀶

󰀺󰀸 , 󰂓c2 =

󰀵

󰀹󰀷
0

1/
√

2

1/
√

2

󰀶

󰀺󰀸 .

Then by the result of Theorem C.12, the vector 󰂓y ∈ col(A) closest to
󰂓b is given by

󰂓y = projcol(A)
󰂓b

= (󰂓b ·󰂓c1)󰂓c1 + (󰂓b ·󰂓c2)󰂓c2

=

󰀳

󰁅󰁃

󰀵

󰀹󰀷
1
2
3

󰀶

󰀺󰀸 ·

󰀵

󰀹󰀷
1
0
0

󰀶

󰀺󰀸

󰀴

󰁆󰁄󰂓c1 +

󰀳

󰁅󰁃

󰀵

󰀹󰀷
1
2
3

󰀶

󰀺󰀸 ·

󰀵

󰀹󰀷
0

1/
√

2

1/
√

2

󰀶

󰀺󰀸

󰀴

󰁆󰁄󰂓c2

=

󰀵

󰀹󰀷
1
0
0

󰀶

󰀺󰀸+
5√
2

󰀵

󰀹󰀷
0

1/
√

2

1/
√

2

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
1

5/2

5/2

󰀶

󰀺󰀸 .

We are then required to solve for the vector 󰂓v that satisfies the system
A󰂓v = 󰂓y. We row reduce as follows:
󰀵

󰀹󰀷
1 0

√
2 1

0 1/
√

2 2 5/2

0 1/
√

2 2 5/2

󰀶

󰀺󰀸
R3−R2

∼

󰀵

󰀹󰀷
1 0

√
2 1

0 1/
√

2 2 5/2

0 0 0 0

󰀶

󰀺󰀸
√

2R2 ∼

󰀵

󰀹󰀷
1 0

√
2 1

0 1 2
√

2 5
√

2/2

0 0 0 0

󰀶

󰀺󰀸

Thus any vector󰂓v of the following form minimizes the distance 󰀂A󰂓v−󰂓b󰀂,

󰂓v =

󰀵

󰀹󰀷
1

5
√

2/2

0

󰀶

󰀺󰀸+ t

󰀵

󰀹󰀷
−
√

2
−2

√
2

1

󰀶

󰀺󰀸 , t ∈ R.

44 math 2la3 course notes

C.5 Matrix decomposition: QR factorization

In the previous example, the columns of A were not linearly indepen-
dent. However, when the columns are linearly independent, we have the
following result.

Theorem C.17. If A is a matrix whose columns are linearly indepen-
dent, then there exist matrices Q and R such that A = QR and

• Q is a matrix of the same shape as A and whose columns form an
orthonoromal basis for col(A), and,

• R is a square, upper triangular invertible matrix with positive entries
on its diagonal.

This theorem says that matrices Q and R exist, but does not say how
to compute them. This question, of how to compute Q and R, will be
answered when we prove the previous theorem, but first, we discuss an
application of QR factorization.

Theorem C.18. Suppose that A is a matrix with linearly independent
columns. Write A = QR be a QR factorization of A. Then, for any
vector 󰂓b, the vector 󰂓v = R−1QT󰂓b satisfies

󰀂A󰂓v −󰂓b󰀂 ≤ 󰀂A󰂓x −󰂓b󰀂
for all vectors 󰂓x.

This is an example of a least squares problem and we will discuss these
further in the following section, including real-world examples of such
problems. For now, we return our attention to the problem of computing
Q and R.

Proof of Theorem C.17. Let A be an m × n matrix. We will construct
an m × n matrix Q and an n × n matrix R that satisfy the conditions of
the theorem. Write

A =

󰀵

󰀹󰀷
| | |
󰂓c1 󰂓c2 · · · 󰂓cn

| | |

󰀶

󰀺󰀸 ,

so the columns of A are the vectors 󰂓c1, . . . ,󰂓cn. Because we assumed that
the columns of A are linearly independent, apply the Gram-Schmidt
procedure (Theorem C.13) to 󰂓c1, . . . ,󰂓cn to get an orthonormal basis
󰂓v1, . . . ,󰂓vn for col(A). Let

Q =

󰀵

󰀹󰀷
| | |
󰂓v1 󰂓v2 · · · 󰂓vn

| | |

󰀶

󰀺󰀸

Now for each i = 1, . . . , n, it is clear that 󰂓ci ∈ span(󰂓c1, . . . ,󰂓ci). But
by Gram-Schmidt, span(󰂓c1, . . . ,󰂓ci) = span(󰂓v1, . . . ,󰂓vi), so there exist
constants r1,i, . . . , ri,i such that

󰂓ci = r1,i󰂓v1 + · · ·+ ri,i󰂓vi + 0󰂓vi+1 + · · ·+ 0󰂓vn.

minimizing distance 45

Encode these coefficients in the vector 󰂓ri = (r1,i, r2,i, . . . , ri,i, 0, . . . , 0).
Then, for each i,

󰂓ci = r1,i󰂓v1 + · · ·+ ri,i󰂓vi + 0󰂓vi+1 + · · ·+ 0󰂓vn

=

󰀵

󰀹󰀷
| | |
󰂓v1 · · · 󰂓vi · · · 󰂓vn

| | |

󰀶

󰀺󰀸

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

r1,i
...

ri,i

0
...
0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

= Q󰂓ri

Repeating this for each i, we have that

A =

󰀵

󰀹󰀷
| | |
󰂓c1 󰂓c2 · · · 󰂓cn

| | |

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
| | |

Q󰂓r1 Q󰂓r2 · · · Q󰂓rn

| | |

󰀶

󰀺󰀸 = QR,

where

R =

󰀵

󰀹󰀷
| | |
󰂓r1 󰂓r2 · · · 󰂓rn

| | |

󰀶

󰀺󰀸

By construction, we have that Q is a matrix whose columns form an
orthonormal basis of col(A) and that R is a square, upper triangular
invertible matrix. Indeed, notice that by definition, in the i-th column
of R, only the first i entries are nonzero. It remains to show that R is
invertible with positive entries on the diagonal.

To see that R is invertible, we will show that all the diagonal entries
are nonzero.3 Assume towards a contradiction that there is a diagonal 3 Recall that for an upper-triangular

matrix, the determinant is the product
of the diagonal entries. So R is invert-
ible if and only if the product of the
diagonal entries is nonzero, which oc-
curs if and only if every diagonal entry
is nonzero.

entry ri,i that is zero. That is,

󰂓ci = r1,i󰂓v1 + · · ·+ ri−1,i󰂓vi−1,

so 󰂓ci ∈ span(󰂓v1, . . . ,󰂓vi−1). But span(󰂓v1, . . . ,󰂓vi−1) = span(󰂓c1, . . . ,󰂓ci−1),
so it follows that󰂓ci ∈ span(󰂓c1, . . . ,󰂓ci−1). Yet this implies that󰂓c1, . . . ,󰂓ci−1,󰂓ci

is a linearly dependent list, which is a contradiction as we assumed that
the columns of A were linearly independent. We conclude that R is
invertible because all of the diagonal entries are nonzero.

Lastly, assume that a diagonal entry is negative, say ri,i < 0. Then,
replace 󰂓vi in the orthonormal basis with −󰂓vi and correspondingly replace
ri,i with −ri,i. 󰃈

46 math 2la3 course notes

QR factorization algorithm. Suppose A is a matrix with
linearly independent columns 󰂓c1, . . . ,󰂓cn.

1. Apply Gram-Schmidt to 󰂓c1, . . . ,󰂓cn to produce an orthonormal
basis 󰂓v1, . . . ,󰂓vn for col(A).

2. For each i, find constants r1,i . . . , ri,i that satisfy

󰂓ci = r1,i󰂓v1 + . . . + ri,i󰂓vi.

3. If ri,i < 0, replace 󰂓vi in the orthonormal basis with −󰂓vi and
correspondingly replace ri,i with −ri,i in the above equation.

4. Set Q be the matrix with columns 󰂓v1, . . . ,󰂓vn and R the matrix
whose (i, j)-th entry is zero if i > j and ri,j otherwise.

C.6 Least squares problems

Recall that given a matrix A and vector 󰂓b, a least squares solution
to A󰂓x = 󰂓b is a vector 󰂓v such that 󰀂A󰂓v −󰂓b󰀂 ≤ 󰀂A󰂓x −󰂓b󰀂 for all 󰂓x.
Theorem C.18 gives a solution to the least squares. In this section,
we will prove this theorem and other results related to least squares
problems.

Definition C.19. The normal equations to the system A󰂓x = 󰂓b are
those specified by the system AT A󰂓x = AT󰂓b.

Theorem C.20. The set of solutions 󰂓x to the least squares problem
A󰂓x ≈󰂓b is exactly the solution set to the normal equations AT A󰂓x = AT󰂓b.
Moreover, this solution set is nonempty.

This theorem, along with QR factorization will be the main tools for
the proof of Theorem C.18.

Proof. Consider the least squares problem arising from A󰂓x = 󰂓b. We
showed in the previous sections that there is a vector 󰂓y in the column
space of A that is closest to󰂓b, meaning that the solution set to the least
squares problem is nonempty. It remains to show that this solution also
satisfies the normal equations.

Let 󰂓v be the vector such that A󰂓v = 󰂓y. That is, 󰀂A󰂓v −󰂓b󰀂 < 󰀂A󰂓x −󰂓b󰀂
for all 󰂓x ∕= 󰂓v. We will show that 󰂓v satisfies the normal equations.

By Theorem C.12, it follows that 󰂓b −󰂓y is orthogonal to every vector
in col(A). In particular, 󰂓b − 󰂓y = 󰂓b − A󰂓v is orthogonal to every col-
umn 󰂓ci of A. Then, because of how the dot-product and matrix-vector
multiplication are defined, we have that

󰂓c T
i (
󰂓b − A󰂓v) = 󰂓ci · (󰂓b − A󰂓v) = 0.

minimizing distance 47

Moreover, each 󰂓c T
i , appearing in the left-hand side above, is a row of

AT. As a result, we have that AT(󰂓b − A󰂓v) = 󰂓0. After distributing, we
have that AT󰂓b − AT A󰂓v =󰂓0, or equivalently, AT A󰂓v = AT󰂓b, as desired.

Each of these steps can be reversed to show that any vector satisfying
the normal equations must also be a least squares solution.4 󰃈 4 For more details, see the textbook's

proof of Theorem 13 in Chapter 6.5.
The following tells us when there is a unique solution to the least

squares problem. The condition of the rows being linearly independent
should be familiar from the previous sections, for instance in Exam-
ple C.16 and Theorem C.17.

Theorem C.21. Let A be a matrix. The following are equivalent:

(i) for any󰂓b, the equation A󰂓x =󰂓b has a unique least squares solution;
(ii) the columns of A are linearly independent;

(iii) the matrix AT A is invertible.

When (any of) these statements are true, the least squares solution is
the vector 󰂓v = (AT A)−1 AT󰂓b.

This theorem says that QR factorization and least squares problems
are two sides of the same coin: we have a least squares solution if and
only if we have a least squares factorization. Also, it turns out that Notice that if the columns of A are lin-

early dependent, then we cannot apply
Gram-Schmidt, and thus, cannot find a
QR factorization!

Theorems C.18 and C.21 are saying the same thing. Recall:

Theorem C.18. If A is a matrix with linearly independent columns,
write A = QR for its QR factorization. For any vector 󰂓b, the solution
to the least squares problem A󰂓x ≈ b is given by the vector 󰂓v = R−1QT󰂓b.

Write A = QR for the QR factorization of A and compute the matrix
(AT A)−1 AT in the statement of Theorem C.21:

(AT A)−1 AT =
󰀓
(QR)TQR

󰀔−1
(QR)T

=
󰀓

RTQTQR
󰀔−1

RTQT

=
󰀓

R−1Q−1(QT)−1(RT)−1
󰀔

RTQT

=
󰀓

R−1Q−1
󰀔 󰀓

(QT)−1(RT)−1RTQT
󰀔

= R−1Q−1

Because the columns of Q are orthonormal, it is an example of an orthog-
onal matrix. It turns out that orthorgonal matrices O satisfy O−1 = OT.
Hence, the above computation shows that the matrix (AT A)−1 AT from Here, we are not requiring orthogonal

matrices to be square.Theorem C.21 is exactly the matrix R−1QT from Theorem C.18.

Proof (transpose of an orthogonal matrix is its inverse − optional). Let
O be a 3 × 3 orthogonal matrix; the proof of the general case is sim-
ilar. Denote by 󰂓u,󰂓v, 󰂓w the orthonormal columns of O. To show that

48 math 2la3 course notes

O−1 = OT, it suffices to show that OTO = I, where I is the identity
matrix. So,

OTO =

󰀵

󰀹󰀷
󰂓u T

󰂓v T

󰂓w T

󰀶

󰀺󰀸
󰁫
󰂓u 󰂓v 󰂓w

󰁬
=

󰀵

󰀹󰀷
󰂓u T󰂓u 󰂓u T󰂓v 󰂓u T󰂓w
󰂓v T󰂓u 󰂓v T󰂓v 󰂓v T󰂓w
󰂓w T󰂓u 󰂓w T󰂓v 󰂓w T󰂓w

󰀶

󰀺󰀸 .

Then, because 󰂓x T󰂓y = 󰂓x ·󰂓y, and using the assumption that 󰂓u, 󰂓v, and 󰂓w
are orthogonal, we have that

OTO =

󰀵

󰀹󰀷
󰀂󰂓u󰀂2 0 0

0 󰀂󰂓v󰀂2 0
0 0 󰀂󰂓w󰀂2

󰀶

󰀺󰀸 = I,

as 󰂓u, 󰂓v, and 󰂓w are orthonormal, so have unit length. 󰃈

QR factorization, revisited

In Section C.5 we learnt how to compute a QR factorization of a given
matrix A. This involved manually computing the entries of R. However,
because we can now easily compute Q−1, we have a second method to
find R.

QR factorization algorithm (version 2). Suppose A is a
matrix with linearly independent columns 󰂓c1, . . . ,󰂓cn.

1. Apply Gram-Schmidt to 󰂓c1, . . . ,󰂓cn to produce an orthonormal
basis 󰂓v1, . . . ,󰂓vn for col(A).

2. Let Q be the matrix whose columns are 󰂓v1, . . . ,󰂓vn.
3. Set R = QT A.
4. If a diagonal entry ri,i of R is negative, replace it with −ri,i

and multiply the ith column of Q by −1.

C.7 Lines of best fit

Consider the following dataset:

(2, 1)

(5, 2)

(7, 3)

(8, 3)

Figure C.2: A sample dataset.

minimizing distance 49

(2, 1)

(5, 2)

(7, 3)

(8, 3)

Figure C.3: A sample dataset with a
line of best fit.

The data appears to lie approximately on a straight line, something
akin to the following.

Suppose we have a line y = β0 + β1x that approximates our data set
{(x1, y1), (x2, y2), . . . , (xm, ym)}. That is, we have the system of approx-
imations,

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

β0 + β1x1 ≈ y1

β0 + β1x2 ≈ y2
...

β0 + β1xm ≈ ym

⇐⇒

󰀵

󰀹󰀹󰀹󰀹󰀷

1 x1

1 x2
...

...
1 xm

󰀶

󰀺󰀺󰀺󰀺󰀸

󰀥
β0

β1

󰀦
≈

󰀵

󰀹󰀹󰀹󰀹󰀷

y1

y2
...

ym

󰀶

󰀺󰀺󰀺󰀺󰀸
.

This now looks like a least squares problem! We wish to find the
matrix 󰂓β =

󰁫
β0 β1

󰁬T
that gives the best approximation to the system

X󰂓β ≈ 󰂓y, where

X =

󰀵

󰀹󰀹󰀹󰀹󰀷

1 x1

1 x2
...

...
1 xm

󰀶

󰀺󰀺󰀺󰀺󰀸
and 󰂓y =

󰀵

󰀹󰀹󰀹󰀹󰀷

y1

y2
...

ym

󰀶

󰀺󰀺󰀺󰀺󰀸
.

We will solve for 󰂓β using the normal equations and Theorem C.20.
That is, the desired vector 󰂓β is given by the solution to the normal
equations XTX󰂓β = XT󰂓y. We compute:

XTX =

󰀥
1 1 1 1
2 5 7 8

󰀦
󰀵

󰀹󰀹󰀹󰀷

1 2
1 5
1 7
1 8

󰀶

󰀺󰀺󰀺󰀸
=

󰀥
4 22

22 142

󰀦
,

and,

XT󰂓y =

󰀥
1 1 1 1
2 5 7 8

󰀦
󰀵

󰀹󰀹󰀹󰀷

1
2
3
3

󰀶

󰀺󰀺󰀺󰀸
=

󰀥
9

57

󰀦

We then encode the normal equations XTX󰂓β = XT󰂓y in the following

50 math 2la3 course notes

augmented matrix and row reduce,
󰀥

4 22 9
22 142 57

󰀦
∼

󰀥
1 11/2 9/4

22 142 57

󰀦
∼

󰀥
1 11/2 9/4

0 21 15/2

󰀦
∼

󰀥
1 11/2 9/4

0 1 5/14

󰀦
∼

󰀥
1 0 2/7

0 1 5/14

󰀦
.

We conclude that when β0 = 2/7 and β1 = 5/14, the line of best fit is
given by y = β0 + β1x = 2/7 + (5/14)x. In Stats 3A03, you learn many general-

izations of this least-squares approach
for lines of best fit.Exercise 20. Use QR factorization instead to solve for 󰂓β in the above

example. Verify that you get the same answer.

D
Constrained Optimization

In this chapter, we continue with optimization problems. The problems
that we will discuss here are of the following form:

maximize 󰂓x T A󰂓x
subject to 󰀂󰂓x󰀂 = 1

where A is a symmetric matrix. Notice that the condition that 󰀂󰂓x󰀂 = 1 Recall that a matrix A is symmetric
if A = AT .says that the vector 󰂓x must lie on the unit circle in R2, or the unit sphere

in R3, and so on in higher dimensions.
If A is diagonal, then the answer is straightforward.

Example D.1. Let A =

󰀥
3 0
0 7

󰀦
and find the maximal value of 󰂓v T A󰂓v

subject to the constraint that 󰀂󰂓v󰀂 = 1. Write 󰂓v = (x, y) (a column
vector) so the objective function is given as follows:

󰂓v T A󰂓v =
󰁫

x y
󰁬 󰀥3 0

0 7

󰀦 󰀥
x
y

󰀦
= 3x2 + 7y2.

Then,

3x2 + 7y2 ≤ 7x2 + 7y2 = 7(x2 + y2) = 7,

where for the last step, we have used the fact that 󰀂󰂓v󰀂 = 1 so 󰀂󰂓v󰀂2 = 1
also. This gives us an upper bound on the objective function. Now,
notice that 󰂓v = (0, 1) satisfies 󰀂󰂓v󰀂 = 1 and 3(0)2 + 7(1)2 = 7, so the
vector (0, 1) maximizes the objective function, and we are done.

Exercise 21. Notice that the maximum value in Example D.1 is exactly
the largest eigenvalue of the matrix A. Given a generic diagonal matrix
D = diag(λ1, . . . , λn), argue that the maximal value of 󰂓x T D󰂓x, for any
󰂓x ∈ Rn satisfying 󰀂󰂓x󰀂 = 1, is the largest eigenvalue. By largest eigenvalue, we mean the

most positive eigenvalue, not the eigen-
value with the largest absolute value.In the rest of this chapter, we discuss solutions to optimization prob-

lems of this form when A is a symmetric—but not necessarily diago-
nal—matrix. This chapter is organized as follows: In Section D.1, we

52 math 2la3 course notes

discuss properties of symmetric matrices and in Section D.2 we discuss
the objective functions of these optimization problems, called quadratic
forms. We conclude the chapter in Section D.3 with the solutions to the
optimization problems.

D.1 Matrix decomposition: Orthogonal diagonalization

We begin by discussing properties of symmetric matrices. In Chapter B,
Theorem B.11 told us that an n× n matrix is diagonalizable if and only if
it has n linearly independent eigenvectors. It turns out that symmetric
matrices are always diagonalizable and, in fact, something stronger is
true.

Recall from Section C.6 that a matrix P is orthogonal if its columns
are orthonormal. Also recall from the same section that orthogonal
matrices P satisfy P−1 = PT.

Definition D.2. The square matrix A is orthogonally diagonaliz-
able if there is a diagonal matrix D and orthogonal matrix P such that
A = PDPT.

The set of eigenvalues of a matrix is
sometimes called the spectrum, hence
the name, Spectral Theorem.Theorem D.3 (Spectral Theorem). Let A be a symmetric matrix.

Then,

(i) A is orthogonally diagonalizable,1 1 As you will argue on Assignment 4, it
turns out that a matrix A is symmetric
if and only if it is orthogonally diago-
nalizable.

(ii) Eigenvectors of A are orthogonal when they correspond to different
eigenvalues,

(iii) Every eigenvalue of A is real,2 2 That is, none of the eigenvalues are
complex numbers.(iv) The dimension of each eigenspace equals the multiplicity of the

corresponding root in the characteristic polynomial.

Proof of (ii). Let 󰂓v1 and 󰂓v2 be eigenvectors corresponding to distinct
eigenvalues λ1 and λ2. We are required to show that 󰂓v1 ·󰂓v2 = 0. Because
λ1 ∕= λ2, we have that λ1 − λ2 ∕= 0, so it suffices to show that (λ1 −
λ2)(󰂓v1 ·󰂓v2) = 0. This is equivalent to show that

λ1(󰂓v1 ·󰂓v2) = λ2(󰂓v1 ·󰂓v2).

So we compute:

λ1(󰂓v1 ·󰂓v2) = (λ1󰂓v1) ·󰂓v2 = (λ1󰂓v1)
T󰂓v2 = (A󰂓v1)

T󰂓v2

= 󰂓vT
1 (AT󰂓v2) = 󰂓vT

1 (A󰂓v2),

where we use the fact that A is symmetric. Continuing,

= 󰂓vT
1 (λ2󰂓v2) = λ2(󰂓vT

1󰂓v2) = λ2(󰂓v1 ·󰂓v2),

as desired. 󰃈

constrained optimization 53

Exercise 22. Complete Exercises 27 and 28 from Chapter 5.5 of the
course textbook to provide justification for item (iii) of the Spectral
Theorem.

Example D.4. We will orthogonally diagonalize the symmetric matrix

A =

󰀵

󰀹󰀷
3 −2 4
−2 6 2
4 2 3

󰀶

󰀺󰀸 ,

with characteristic polynomial −(λ − 7)2(λ + 2). An eigenvector asso-

ciated to λ = −2 is

󰀵

󰀹󰀷
−1
−1/2

1

󰀶

󰀺󰀸 and eigenvectors associated to λ = 7 are

󰀵

󰀹󰀷
1
0
1

󰀶

󰀺󰀸 and

󰀵

󰀹󰀷
−1/2

1
0

󰀶

󰀺󰀸. Notice that we have two linearly inde-
pendent eigenvalues associated to the
eigenvalue λ = 7. The correspond-
ing root in the characteristic polyno-
mial has degree two, as predicted by
the Spectral Theorem.

An orthonormal basis for the eigenspace corresponding to λ = −2 is
given by normalizing the above vector,

󰀂(−1, −1/2, 1)󰀂 =

󰁵
1 +

1
4
+ 1 =

3
2

,

1
3/2

󰀵

󰀹󰀷
−1
−1/2

1

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
−2/3

−1/3

2/3

󰀶

󰀺󰀸 .

Meanwhile, applying Gram-Schmidt to the linearly independent eigen-
vectors corresponding to λ = 7 yields the orthonormal list

󰀵

󰀹󰀷
1/

√
2

0
1/

√
2

󰀶

󰀺󰀸 ,

󰀵

󰀹󰀷
−1/

√
18

4/
√

18

1/
√

18

󰀶

󰀺󰀸 .

We conclude that

A =

󰀵

󰀹󰀷
1/

√
2 −1/

√
18 −2/3

0 4/
√

18 −1/3

1/
√

2 1/
√

18 2/3

󰀶

󰀺󰀸

󰀵

󰀹󰀷
7 0 0
0 7 0
0 0 −2

󰀶

󰀺󰀸

󰀵

󰀹󰀷
1/

√
2 −1/

√
18 −2/3

0 4/
√

18 −1/3

1/
√

2 1/
√

18 2/3

󰀶

󰀺󰀸

T

=

󰀵

󰀹󰀷
1/

√
2 −1/

√
18 −2/3

0 4/
√

18 −1/3

1/
√

2 1/
√

18 2/3

󰀶

󰀺󰀸

󰀵

󰀹󰀷
7 0 0
0 7 0
0 0 −2

󰀶

󰀺󰀸

󰀵

󰀹󰀷
1/

√
2 0 1/

√
2

−1/
√

18 4/
√

18 1/
√

18

−2/3 −1/3 2/3

󰀶

󰀺󰀸

= PDPT

is the orthogonal diagonalization of A.

The procedure outlined in the above example produces an orthogonal
diagonalization for any symmetric matrix.

54 math 2la3 course notes

Orthogonal diagonalization procedure for symmetric ma-
trices. Let A be a symmetric matrix.

1. Find the eigenvalues of A.
2. For each eigenvalue λi, find di linearly independent associated

eigenvectors, where di is the multiplicity of the root in the
characteristic polynomial corresponding to λi.

3. Apply Gram-Schmidt (Theorem C.13) to each linearly in-
dependent list to produce an orthonormal basis for each
eigenspace.

4. Use these orthonormal lists to construct the matrices P and
D in the normal diagonalization way.

Because of item (ii), it follows that vectors from one eigenspace
are orthogonal to the vectors in other eigenspaces, so P is an
orthogonal matrix.

D.2 Quadratic forms

In this section we will discuss quadratic forms, the family of objective
functions in this chapter's optimization problems. They earn this name
as each term in a quadratic form has degree 2.

Definition D.5. A function Q : Rn → R is a quadratic form if there
is a symmetric n × n matrix A such that Q(󰂓x) = 󰂓x T A󰂓x for all 󰂓x ∈ Rn.
We call A the matrix of the quadratic form.

Exercise 23. Show that each of the following functions Q are quadratic
forms on R3 by, for each, finding a matrix A such that Q = 󰂓v T A󰂓v, where
󰂓v = (x, y, z).

(a) 5x2 + 3y2 + 2z2 − xy + 8yz

(b) xz

(c) x2 + 11xy + 121y2

Give an example of a function P : R2 → R that is not a quadratic form.

We saw in Example D.1 that our optimization problems are much
simpler when the matrix of the quadratic form is diagonal. In this case,
we say that the quadratic form has no cross-product terms. That is,
if 󰂓x = (x1, . . . , xn), then the quadratic form 󰂓x T A󰂓x has no cross-product
terms if no monomial xixj appears in 󰂓x T A󰂓x for which i ∕= j.

Definition D.6. A change of variables is an equation of the form
󰂓x = P󰂓y where P is an invertible matrix.

constrained optimization 55

In the above definition, the matrix P changes from 󰂓y variables to 󰂓x
variables. The following theorem says that we can perform a change of
variables from any quadratic form to one whose matrix is diagonal!

Theorem D.7 (Principal Axes Theorem). Let A be symmetric. There Recall that orthogonal matrices are
necessarily invertible; see page 47.exists an orthogonal matrix P whose change of coordinates 󰂓x = P󰂓y trans-

forms the quadratic form 󰂓x T A󰂓x = 󰂓y T D󰂓y, and the right-hand side has
no cross-product terms.

Definition D.8. In the above theorem, the columns of P are called the
principal axes of the quadratic form 󰂓x T A󰂓x.

Proof of Theorem D.7. Because A is symmetric, it is orthogonally diag-
onalizable, A = PDPT. Let 󰂓x = P󰂓y, or equivalently, 󰂓y = PT󰂓x. Then,

󰂓x T A󰂓x = (P󰂓y)T A󰂓(P󰂓y) = 󰂓y T(PT AP)󰂓y = 󰂓y T D󰂓y,

where we use the fact that, because A = PDPT, we have D = PT AP. 󰃈

D.3 Optimal values of quadratic forms

The tools in the previous section give us the following answer to the
constrained optimization problem.

Theorem D.9. Let A be symmetric and Q(󰂓x) = 󰂓x T A󰂓x. Denote by
λ1 ≥ λ ≥ · · · ≥ λn the eigenvalues of A. Then,

max {Q(󰂓x) | 󰀂󰂓x󰀂 = 1} = λ1

and

min {Q(󰂓x) | 󰀂󰂓x󰀂 = 1} = λn

In particular, we have λ1 = Q(󰂓v) where 󰂓v is a unit eigenvector cor-
responding to λ1, and similarly, λn = Q(󰂓u) for a unit eigenvector 󰂓u
corresponding to λn.

That is, the solutions to the constrained maximization and minimiza-
tion problems are the largest and smallest eigenvalues, respectively, and
are attained at their corresponding unit eigenvectors.

Proof. Assume that A is a 3 × 3 matrix with eigenvalues a ≥ b ≥ c and
so orthogonally diagonalizes as A = PDP−1 where The argument is the same for larger

matrices, but with more cumbersome
notation.

P =

󰀵

󰀹󰀷
| | |
󰂓u1 󰂓u2 󰂓u3

| | |

󰀶

󰀺󰀸 and D =

󰀵

󰀹󰀷
a 0 0
0 b 0
0 0 c

󰀶

󰀺󰀸 .

Here, the vectors 󰂓ui are orthonormal eigenvectors associated to the eigen-
values a, b, and c. Because a ≥ b ≥ c, for any unit vector 󰂓y = (y1, y2, y3)

we must have
󰂓y T D󰂓y = ay2

1 + by2
2 + cy2

3 ≤ ay2
1 + ay2

2 + ay2
3 = a(y2

1 + y2
2 + y2

3) = a.

56 math 2la3 course notes

Hence M = max
󰀋
󰂓y T D󰂓y | 󰀂󰂓y󰀂 = 1

󰀌
≤ a. Moreover, this upper bound

is attained by plugging in 󰂓e1 = (1, 0, 0) for 󰂓y.
Returning to the 󰂓x's, we have

M = a = 󰂓e T
1 D󰂓e1 = 󰂓e T

1 (PT AP)󰂓e1 = (P󰂓e1)
T A(P󰂓e1) = 󰂓u T

1 A󰂓u1.

The minimization proof is similar. 󰃈

Example D.10. We will find the maximal value of the quadratic form
Q(󰂓x) = 󰂓x T A󰂓x when 󰀂󰂓x󰀂 = 1 and

A =

󰀵

󰀹󰀷
3 2 1
2 3 1
1 1 4

󰀶

󰀺󰀸 .

The characteristic polynomial of A is (1−λ)(3−λ)(6−λ) so the eigen-
values are 6, 3, and 1. Hence the maximal value of the quadratic form
Q(󰂓x) is 6 and is attained when 󰂓x is a unit eigenvector associated to
λ = 6. Eigenvectors corresponding to λ = 6 satisfy

󰀵

󰀹󰀷
−3 2 1 0
2 −3 1 0
1 1 −2 0

󰀶

󰀺󰀸 ∼

󰀵

󰀹󰀷
1 0 −1 0
0 1 −1 0
0 0 0 0

󰀶

󰀺󰀸

and so are of the form 󰂓x = k(1, 1, 1). For 󰂓x to be a unit vector, we take
󰂓x = (1/

√
3, 1/

√
3, 1/

√
3). We check our answer; the quadratic form is

Q(x, y, z) = 3x2 + 3y2 + 4z2 + 4xy + 2xz + 2yz

and so,

Q(1/
√

3, 1/
√

3, 1/
√

3) = 3
󰀕

1√
3

󰀖2
+ 3

󰀕
1√
3

󰀖2
+ 4

󰀕
1√
3

󰀖2
+ 4

󰀕
1√
3

󰀖󰀕
1√
3

󰀖
+ 2

󰀕
1√
3

󰀖󰀕
1√
3

󰀖
+ 2

󰀕
1√
3

󰀖󰀕
1√
3

󰀖

= 1 + 1 +
4
3
+

4
3
+

2
3
+

2
3

= 2 +
12
3

= 6,

as expected.

Exercise 24. In the previous example, find the minimal value of the
quadratic form and a vector 󰂓v that attains this minimum.

We conclude this section with a modification of Theorem D.9 to a
setting with additional constraints.

Theorem D.11. Let Q(󰂓x) be a quadratic form with associated symmet-
ric n × n matrix A. Denote by λ1 ≥ λ2 ≥ · · · ≥ λn the eigenvalues of
A and for each i, denote by 󰂓ui a unit eigenvector corresponding to λi.

Then, the maximal value of Q(󰂓x), subject to the constraints 󰀂󰂓x󰀂 = 1
and 󰂓x · 󰂓u1 = 0, . . . ,󰂓x · 󰂓uk = 0, is given by λk+1 = Q(󰂓uk+1).

constrained optimization 57

Exercise 25. Find the maximal value of the quadratic form Q(󰂓x)
given in Example D.10 subject to the constraints that 󰀂󰂓x󰀂 = 1 and
󰂓x · (1, 1, 1) = 0.

D.4 Classification of quadratic forms

Definition D.12. A quadratic form Q(󰂓x) is called

(i) positive definite if Q(󰂓x) > 0 for all 󰂓x ∕=󰂓0,
(ii) positive semidefinite if Q(󰂓x) ≥ 0 for all 󰂓x ∕= 0.

Any quadratic form that is positive definite is also positive semidefinite.
For example, Q(x, y) = x2 + y2 is both positive definite and positive
semidefinite. However, the surface 󰁨Q(x, y) = x2 is positive semidefinite
but not positive definite, because 󰁨Q(0, 1) = 0.

We have analogous negative versions of positive (semi)definiteness: A
quadratic form Q(󰂓x) is called

(iii) negative definite if Q(󰂓x) < 0 for all 󰂓x ∕=󰂓0,
(iv) negative semidefinite if Q(󰂓x) ≤ 0 for all 󰂓x ∕=󰂓0.

If a quadratic form Q(󰂓x) takes on both positive and negative values
then we say that Q(x) is indefinite.

Exercise 26. Explain why the quadratic form z(x, y) = x2 − y2 is
indefinite. Sketch this surface as well as the examples given within Def-
inition D.12.

It can be helpful to visualize a quadratic form that we are working
with, and the classification above tells us what simpler surface (e.g., the
paraboloid) "looks like" our quadratic form

In the examples we have seen so far, it has been relatively easy to
classify However, this is not always the case.

Example D.13. The quadratic form
Q(x, y, z) = 3x2 + 2y2 + z2 + 4xy + 4yz.

looks like it should be positive definite, or at least positive semidefinite,
because of all the +'s. However, notice that

Q(1,−2, 2) = 3(1)2 + 2(−2)2 + 22 + 4(−2) + 4(−2)(2)

= 3 + 8 + 4 − 8 − 16 = 7 − 16

= −9,

so Q(x, y, z) is indefinite.

The choice of (1,−2, 2) appeared to come out of nowhere, but there
was a trick to find it! Denote by A the matrix associated to the above

58 math 2la3 course notes

quadratic form Q(󰂓x) = 󰂓x T A󰂓x. Then, you can check that −1 is an
eigenvalue of A with eigenvector (1,−2, 2). That Q(x, y, z) takes on
negative values was detected by the negative eigenvalue.

Theorem D.14. If Q is a quadratic form associated to symmetric ma-
trix A, then Q is...

(i) positive definite if and only if all the eigenvalues of A are positive;
(ii) positive semidefinite if and only if all the eigenvalues of A are

nonnegative;
(iii) negative definite if and only if all the eigenvalues of A are negative;
(iv) negative semidefinite if and only if all the eigenvalues of A are

nonpositive;
(v) indefinite if and only if A has positive and negative eigenvalues.

Sketch of proof. Use the Principal Axes Theorem (Theorem D.7) to per-
form a change of coordinates such that 󰂓x T A󰂓x = 󰂓y T D󰂓y so

Q(󰂓x) = λ1y2
1 + λ2y2

2 + · · ·+ λny2
n.

The result then follows because the vectors 󰂓y are in one-to-one corre-
spondence with the vectors 󰂓x. 󰃈

Exercise 27. Classify the quadratic forms from Exercise 23.

E
Three Applications of Singular Value Decomposition

We have seen matrix decompositions a few time throughout this course:
diagonalization, QR factorization, and orthogonal diagonalization. In
this chapter, we add another decomposition to our toolkit in singular
value decomposition (SVD). We also discuss its applications to least
squares problems and image compression.

E.1 Matrix decomposition: Singular value decomposition

If A is an m × n matrix, then AT A is necessarily symmetric. Indeed,

(AT A)T = AT(AT)T = AT A.

Thus, by the results in the last section, we know that AT A can be
orthogonally diagonalized. That is, there are is an orthonormal basis
of Rn, say 󰂓v1, . . . ,󰂓vn, consisting of eigenvectors of AT A. Denote by
λ1, . . . , λn the eigenvalues associated to 󰂓v1, . . . ,󰂓vn. Then, notice that for
each i = 1, . . . , n,

󰀂A󰂓vi󰀂2 = (A󰂓vi) · (A󰂓vi) = (A󰂓vi)
T(A󰂓vi)

= 󰂓vT
i (AT A)󰂓vi = 󰂓vT

i (λi󰂓vi) = λi(󰂓vT
i ·󰂓vi)

= λi,

where the last equality holds because 󰂓vi is a unit vector.1 Because 1 Recall that 󰂓v1, . . . ,󰂓vn is an orthonor-
mal list.󰀂A󰂓vi󰀂2 ≥ 0, it follows that each eigenvalue λi is also nonnegative.

Definition E.1. The singular values σ1, . . . , σn of a matrix A are the
square roots of the eigenvalues of AT A, in decreasing order.

That is, if λ1, . . . , λn are the eigenvalues of AT A, then σi =
√

λi and
σ1 ≥ σ2 ≥ · · · ≥ σn.

Remark E.2. From the above computation, we have that
σi =

󰁳
λi =

󰁴
󰀂A󰂓vi󰀂2 = 󰀂A󰂓vi󰀂 .

That is, the i-th singular value of A is the length of the vector 󰀂A󰂓vi󰀂.

60 math 2la3 course notes

Example E.3. Let A =

󰀥
4 11 14
8 7 −2

󰀦
. This represents a linear trans-

formation from R3 to R2. Suppose that we restrict the input of our
linear transformation to only the vectors 󰂓x ∈ R3 satisfying 󰀂󰂓x󰀂 = 1,
that is, those vectors lying on the unit sphere. Multiplying by A any
vector on the unit sphere yields an ellipse in R2.

Using the results of last chapter, we can find the maximal value of
󰀂A󰂓x󰀂 when 󰂓x is a unit vector. Indeed,

• The unit vector 󰂓x giving the maximal value of 󰀂A󰂓x󰀂 will also give
the maximal value of 󰀂A󰂓x󰀂2;

• 󰀂A󰂓x󰀂2 = 󰂓xT(AT A)xT, and the right-hand side is a quadratic form.

So, Theorem D.9 says that the maximum of 󰀂A󰂓x󰀂2 is the largest eigen-
value of AT A. Equivalently, we have that the maximum of 󰀂A󰂓x󰀂 is the
largest singular value of A. We now compute the singular values of A.
First, AT A is given by

AT A =

󰀵

󰀹󰀷
4 8
11 7
14 −2

󰀶

󰀺󰀸

󰀥
4 11 14
8 7 −2

󰀦
=

󰀵

󰀹󰀷
80 100 40
100 170 140
40 140 200

󰀶

󰀺󰀸

which has eigenvalues λ1 = 360, λ2 = 90, and λ3 = 0 and corresponding
unit eigenvectors

󰂓v1 =

󰀵

󰀹󰀷
1/3

2/3

2/3

󰀶

󰀺󰀸 , 󰂓v2 =

󰀵

󰀹󰀷
−2/3

−1/3

2/3

󰀶

󰀺󰀸 , 󰂓v3 =

󰀵

󰀹󰀷
2/3

−2/3

1/3

󰀶

󰀺󰀸 .

Thus the maximal value of 󰀂A󰂓x󰀂, among unit vectors 󰂓x is σ1 =
√

λ1 =√
360 = 6

√
10 and is attained when 󰂓x = 󰂓v1. Notice that

A󰂓v1 =

󰀥
4 11 14
8 7 −2

󰀦 󰀵

󰀹󰀷
1/3

2/3

2/3

󰀶

󰀺󰀸 =

󰀥
18
6

󰀦
,

which is exactly a point on the ellipse furthest away from the origin.

Exercise 28. Use Theorem D.11 conclude that the unit vector 󰂓u that
maximizes 󰀂A󰂓u󰀂 subject to 󰂓u ·󰂓v1 is 󰂓u = 󰂓v2.

three applications of singular value decomposition 61

Notice that A󰂓v1 and A󰂓v2, the vectors corresponding to the maximal
lengths in the example and exercise, are orthogonal. This is no accident,
as we record in the following result.

Theorem E.4. Let A be a matrix, so AT A is symmetric with orthonor-
mal eigenvectors 󰂓v1, . . . ,󰂓vn corresponding to eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λn. Suppose that λr+1 = · · · = λn = 0. Then, A󰂓v1, . . . , A󰂓vr is an That λr+1 = · · · = λn = 0 says that we

have r nonzero eigenvalues. Or equiva-
lently, that we have r nonzero singular
values.

orthogonal basis for col(A) and rank(A) = r.

Recall that col(A) is the vector subspace given by the span of the
columns of A. The rank of A is the dimension of this subspace and
we denote it by rank(A). Equivalently, it is the number of linearly
independent columns of A.

Proof. To see that A󰂓vi and A󰂓vj are orthogonal, compute

(A󰂓vi) · (A󰂓vj) = 󰂓v T
i (AT A)󰂓vj = λj(󰂓vi ·󰂓vj)

and recall that 󰂓vi and 󰂓vj were defined to be orthonormal. Moreover
for any i = 1, . . . , r, because A󰂓vi = λi󰂓vi and λi ∕= 0, it follows that
A󰂓v1, . . . , A󰂓vr is linearly independent.2 󰃈 2 We omit the proof that this list also

spans col(A) and, hence, is a basis for
col(A). If you are interested, read the
proof of Theorem 9 in Section 7.4 of the
course textbook.

Theorem E.5 (Singular Value Decomposition). Let A be an m × n
matrix with rank r. Then, there exist matrices U, V, and Σ such that
A = UΣVT and,

• Σ is an m × n matrix whose diagonal entries are σ1, . . . , σr, 0, . . . , 0,
• U is an m × m orthogonal matrix, and
• V is an n × n orthogonal matrix.

The columns of U are called the left singular vectors of A and the
columns of V are the right singular vectors.

Singular Value Decomposition (SVD) Procedure.

1. Orthogonally diagonalize AT A = P 󰁨DPT using the method
in Section D.1, where the diagonal entries of D are listed in
decreasing order, λ1 ≥ λ2 ≥ · · · ≥ λm.

2. Construct Σ as the m×n matrix whose diagonal entries are the
nonzero singular values σ1 ≥ · · · ≥ σr and has zeros elsewhere.

3. Set V = P.
4. Construct an orthonormal basis 󰂓u1, . . . ,󰂓ur for col(A) by nor-

malizing each A󰂓vi. That is, 󰂓ui =
1

󰀂A󰂓vi󰀂
(A󰂓vi) =

1
σi
(A󰂓vi).

5. Extend 󰂓u1, . . . ,󰂓ur to an orthonormal basis 󰂓u1, . . . ,󰂓um for Rm.
Define U to be the matrix whose i-th column is 󰂓ui.

The final step is the most difficult as it is less algorithmic; we need
to find the right vectors to include to extend our list to an orthonormal

62 math 2la3 course notes

basis for Rm. In general, we need to extend the list to a basis of Rm by in-
cluding linearly independent vectors, and then applying Gram-Schmidt.

Here is a third, yet less efficient,
method of finding U. We find V by or-
thogonally diagonalizing AT A = P 󰁨DPT

and setting V = P. Just as AT A is sym-
metric, so is AAT , and it turns out that
a suitable choice for U is the orthogo-
nal matrix P′ that orthogonally diago-
nalizes AAT = P′ 󰁨D′(P′)T .

Example E.6. We will find a singular value decomposition of

A =

󰀵

󰀹󰀷
1 −1
−2 2
2 −2

󰀶

󰀺󰀸 .

First, we have that

AT A =

󰀥
1 −2 2
−1 2 −2

󰀦 󰀵

󰀹󰀷
1 −1
−2 2
2 −2

󰀶

󰀺󰀸 =

󰀥
9 −9
−9 9

󰀦

which has eigenvalues λ1 = 18 and λ2 = 0. Unit vectors corresponding
to λ1 and λ2 are, respectively,

󰂓v1 =

󰀥
1/

√
2

−1/
√

2

󰀦
and 󰂓v2 =

󰀥
1/

√
2

1/
√

2

󰀦
.

The singular values are σ1 =
√

λ1 =
√

18 = 3
√

2 and σ2 = 0. We thus
have that

Σ =

󰀵

󰀹󰀷
σ1 0
0 σ2

0 0

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
3
√

2 0
0 0
0 0

󰀶

󰀺󰀸

and

V =

󰀵

󰀹󰀷
| |
󰂓v1 󰂓v2

| |

󰀶

󰀺󰀸 =

󰀥
1/

√
2 1/

√
2

−1/
√

2 1/
√

2

󰀦
.

Our next step is to start with A󰂓v1, A󰂓v2 and transform it into an or-
thonormal basis for R3.

A󰂓v1 =

󰀵

󰀹󰀷
1 −1
−2 2
2 −2

󰀶

󰀺󰀸

󰀥
1/

√
2

−1/
√

2

󰀦
=

󰀵

󰀹󰀷
2/

√
2

−4/
√

2

4/
√

2

󰀶

󰀺󰀸

A󰂓v2 =

󰀵

󰀹󰀷
1 −1
−2 2
2 −2

󰀶

󰀺󰀸

󰀥
1/

√
2

1/
√

2

󰀦
=

󰀵

󰀹󰀷
0
0
0

󰀶

󰀺󰀸

So our first column of U is

󰂓u1 =
1
σ1

A󰂓v1 =
1

3
√

2

󰀵

󰀹󰀷
2/

√
2

−4/
√

2

4/
√

2

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
1/3

−2/3

2/3

󰀶

󰀺󰀸 .

We are required to extend this to an orthonormal basis 󰂓u1,󰂓u2,󰂓u3 of R3.
Vectors 󰂓x = (x1, x2, x3) that are orthogonal to 󰂓u1 must satisfy

󰂓u1 ·󰂓x = 0 ⇐⇒ 1
3

x1 −
2
3

x2 +
2
3

x3 = 0

⇐⇒ x1 − 2x2 + 2x3 = 0,

three applications of singular value decomposition 63

so a basis for the subspace of vectors orthogonal to 󰂓u1 is given by

󰂓w1 =

󰀵

󰀹󰀷
2
1
0

󰀶

󰀺󰀸 , 󰂓w2 =

󰀵

󰀹󰀷
−2
0
1

󰀶

󰀺󰀸 .

Applying Gram-Schmidt to the list 󰂓u1, 󰂓w2, 󰂓w3 yields the orthonormal list
󰂓u1,󰂓u2,󰂓u3, where

󰂓u1 =

󰀵

󰀹󰀷
1/3

−2/3

2/3

󰀶

󰀺󰀸 , 󰂓u2 =

󰀵

󰀹󰀷
2/

√
5

1/
√

5

0

󰀶

󰀺󰀸 , and 󰂓u3 =

󰀵

󰀹󰀷
−2/

√
45

4/
√

45

5/
√

45

󰀶

󰀺󰀸 .

We take these vectors to be the columns of U. We thus have the following
singular value decomposition:

A = UΣVT =

󰀵

󰀹󰀷
1/3 2/

√
5 −2/

√
45

−2/3 1/
√

5 4/
√

45

2/3 0 5/
√

45

󰀶

󰀺󰀸

󰀵

󰀹󰀷
3
√

2 0
0 0
0 0

󰀶

󰀺󰀸

󰀥
1/

√
2 −1/

√
2

1/
√

2 1/
√

2

󰀦
.

Exercise 29. Find a singular value decomposition of the matrix in
Example E.3.

E.2 Pseudoinverses and least squares problems

For the remainder of this chapter, we will discuss applications of the
singular value decomposition A = UΣVT. We start by revisiting least
squares problems. Recall that given a matrix A and vector b, the least
squares problem asks to find the vector 󰂓x so that A󰂓x best approximates
󰂓b. That is, the vector 󰂓x that minimizes the norm 󰀂A󰂓x −󰂓b󰀂.

Our main result is that a singular value decomposition of A gives rise
to a pseudoinverse of A, denoted by A+. Suppose that A is an m × n The pseudoinverse A+ of A satisfies

A = AA+A and A+ = A+AA+. In
the right-hand sides of these equations,
we a factor of A+A behaving like the
identity matrix. If A is invertible, then
A+ = A−1, however, these equations
hold even when A is not invertible.

matrix and has rank r, so A has r nonzero singular values. Then we can
write Σ as the block matrix

Σ =

󰀥
D 0
0 0

󰀦
,

where D = diag(σ1, . . . , σr) is an r × r diagonal matrix. Then,

A = UΣVT =

󰀵

󰀹󰀷
| | |
󰂓u1 󰂓u2 · · · 󰂓um

| | |

󰀶

󰀺󰀸

󰀥
D 0
0 0

󰀦
󰀵

󰀹󰀹󰀹󰀹󰀷

| 󰂓v T
1 |

| 󰂓v T
2 |

...

| 󰂓v T
n |

󰀶

󰀺󰀺󰀺󰀺󰀸
.

Because of the 0's in Σ, the columns 󰂓ur+1, . . . ,󰂓um of U and rows󰂓vr+1, . . . ,󰂓vn

of VT do not contribute anything to the product UΣVT. That is, we

64 math 2la3 course notes

can equivalently write

A = UΣVT =

󰀵

󰀹󰀷
| | |
󰂓u1 󰂓u2 · · · 󰂓um

| | |

󰀶

󰀺󰀸

󰀥
D 0
0 0

󰀦
󰀵

󰀹󰀹󰀹󰀹󰀷

| 󰂓v T
1 |

| 󰂓v T
2 |

...

| 󰂓v T
n |

󰀶

󰀺󰀺󰀺󰀺󰀸

=

󰀵

󰀹󰀷
| | | |
󰂓u1 · · · 󰂓ur 󰂓0 · · · 󰂓0
| | | |

󰀶

󰀺󰀸

󰀥
D 0
0 0

󰀦

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

| 󰂓v T
1 |

...

| 󰂓v T
r |

| 󰂓0 |

...

| 󰂓0 |

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

.

Denote by Ur the m × r matrix obtained by taking the first r columns
of U. Similarly, denote by VT

r the r × n matrix obtained by taking the
first r rows of VT. The computation above shows that

A = UrDVT
r .

Definition E.7. With notation as above, the pseudoinverse of A is
A+ := VrD−1UT

r .
The psudoeinverse is also known as the
Moore-Penrose inverse, named after a
pair of the mathematicians discovered
it. Independently of one another, E.
Hastings Moore (American) discovered
it in 1920, Arne Bjerhammar (Swedish)
in 1951, and Roger Penrose (British) in
1955.

Because Ur and VT
r are not square matrices, they do not admit in-

verses. However, because U and VT are orthogonal matrices, we have
that U−1 = UT and (VT)−1 = V, which alludes to the name pseudoin-
verse.

Theorem E.8. A vector 󰂓x∗ that solves the least squares problem A󰂓x ≈󰂓b
is given by 󰂓x∗ = A+󰂓b.

Proof. Compute:

A󰂓x∗ = A(A+󰂓b) = (UrDVT
r)(VrD−1UT

r
󰂓b)

= (UrD)(VT
r Vr)(D−1UT

r)󰂓b.

Because V is orthogonal, it follows that VT
r Vr is the r× r identity matrix.

Thus,

= Ur(DD−1)UT
r
󰂓b = UrUT

r
󰂓b.

Recall that, by construction of U and Ur, the columns 󰂓u1, . . . ,󰂓ur form
an orthonormal basis for col(A). Then,

UrUT
r
󰂓b = Ur

󰀳

󰁅󰁅󰁃

󰀵

󰀹󰀹󰀷

| 󰂓u1 |

...

| 󰂓ur |

󰀶

󰀺󰀺󰀸󰂓b

󰀴

󰁆󰁆󰁄 =

󰀵

󰀹󰀷
| |
󰂓u1 · · · 󰂓ur

| |

󰀶

󰀺󰀸

󰀵

󰀹󰀹󰀹󰀹󰀷

󰂓u1 ·󰂓b
󰂓u2 ·󰂓b

...
󰂓ur ·󰂓b

󰀶

󰀺󰀺󰀺󰀺󰀸
= (󰂓u1 ·󰂓b)󰂓u1 +(󰂓u2 ·󰂓b)󰂓u2 + · · ·+(󰂓ur ·󰂓b)󰂓ur.

three applications of singular value decomposition 65

The right-hand side is exactly the projection formula given in Theo-
rem C.12. That is, A󰂓x∗ is the projection of󰂓b onto col(A) and hence, 󰂓x∗
is a least squares solution to the least squares problem. 󰃈

Example E.9. We will solve the least squares problem

A󰂓x =

󰀵

󰀹󰀷
1 −1
−2 2
2 −2

󰀶

󰀺󰀸󰂓x ≈

󰀵

󰀹󰀷
1
−2
3

󰀶

󰀺󰀸 .

Recall from Example E.6 that we have a singular value decomposition

A = UΣVT =

󰀵

󰀹󰀷
1/3 2/

√
5 −2/

√
45

−2/3 1/
√

5 4/
√

45

2/3 0 5/
√

45

󰀶

󰀺󰀸

󰀵

󰀹󰀷
3
√

2 0
0 0
0 0

󰀶

󰀺󰀸

󰀥
1/

√
2 −1/

√
2

1/
√

2 1/
√

2

󰀦
.

From Σ, we see that we have r = 1. Thus, Theorem E.8 says that a least
squares solution is given by 󰂓x∗ = A+󰂓b. First, compute

A+ = (VrD−1UT
r)

=

󰀥
1/

√
2

−1/
√

2

󰀦 󰁫
1/3

√
2
󰁬 󰁫

1/3 −2/3 2/3
󰁬

=

󰀥
1/6

−1/6

󰀦 󰁫
1/3 −2/3 2/3

󰁬

=

󰀥
1/18 −1/9 1/9

−1/18 1/9 −1/9

󰀦
.

Then,

󰂓x∗ = A+󰂓b =

󰀥
1/18 −1/9 1/9

−1/18 1/9 −1/9

󰀦 󰀵

󰀹󰀷
1
−2
3

󰀶

󰀺󰀸 =

󰀥
11/18

−11/18

󰀦

The best approximation is

A󰂓x∗ =

󰀵

󰀹󰀷
1 −1
−2 2
2 −2

󰀶

󰀺󰀸

󰀥
11/18

−11/18

󰀦
=

󰀵

󰀹󰀷
11/9

−22/9

22/9

󰀶

󰀺󰀸 .

E.3 Mean, variance, and covariance

In this section, we introduce several statistical tools to discuss principal
component analysis in the next section. The main is idea is the following.

Suppose that you have a large dataset where each observation has
multiple datapoints. For instance, if you wanted to study the output
variable of precipitation, you might have input variables temperature,
humidity, pressure, wind speed, and time of day. If you have N ob-
servations, then you would store the data in an 5 × N matrix, where
each column is an observation and each of the 5 rows correspond to the
variables temperature, humidity, and so on.

66 math 2la3 course notes

Definition E.10. A matrix of observations A is a p × N matrix,
where each of the N columns are observation vectors. Denote the
columns of A by 󰂓Xi as follows,

A =

󰀵

󰀹󰀷
| | |
󰂓X1 󰂓X2 · · · 󰂓XN

| | |

󰀶

󰀺󰀸 ,

that is, each 󰂓Xi is an observation. The sample mean of 󰂓X1, . . . , 󰂓XN

is the vector The mean of a set of real numbers
x1, . . . , xn is x1+···+xn

n , so the sample
mean is exactly the same where we re-
place real numbers with vectors.󰂓M =

1
N

󰀓
󰂓X1, . . . , 󰂓XN

󰀔
.

For each i, define 󰂓Xi = 󰂓Xi − 󰂓M, the difference between 󰂓Xi and the
mean 󰂓M. Define a matrix B by Geometrically, 󰂓M is the centre of the

dataset 󰂓X1, . . . , 󰂓XN . Now for B and
󰂓X1, . . . , 󰂓XN , the centre is at the origin;
we have applied a shift by subtracting
the mean from each vector.B =

󰀵

󰀹󰀷
| | |
󰂓X1 󰂓X2 · · · 󰂓XN

| | |

󰀶

󰀺󰀸 ,

which we say is in mean-deviation form. Lastly, the sample covari-
ance matrix is following the p × p matrix,

S =
1

N − 1
BBT .

The sample covariance matrix S keeps track of two important pieces
of information: variance of individual variables (on the diagonal of S)
and correlation between pairs of variables (on the off-diagonal).

First, consider a diagonal entry of S. Then, using the above formula
for S, it follows that

[S]i,i =
1

N − 1
(󰂓ri ·󰂓ri),

where 󰂓ri is the i-th row of B. Recall that rows of A, and hence rows
of B, correspond to input variables (such as temperature in our running
example). This value [S]i,i is the called the variance of the i-th input
variable. Variance is a measure of spread, so the larger the value [S]i,i,
the wider the range of the corresponding observed datapoints.

Variance is the key to principal component analysis. Indeed, mod-
elling a line or plane of best fit is simply trying to find a linear approxi-
mation that best explains the variance (or spread) of a given dataset.

Meanwhile, the off-diagonal entries of S are covariance, or correla-
tion between two input variables (say, temperature and humidity).

[S]i,j =
1

N − 1
(󰂓ri ·󰂓rj).

A value of 0 indicates that the i-th and j-th variables (e.g., time of day
and pressure) are uncorrelated; one has no effect on the other. The
larger the value, the more they are correlated.

three applications of singular value decomposition 67

Example E.11. We will compute the sample mean and sample covari-
ance matrix of the following dataset:

A =

󰀵

󰀹󰀷
| | | |
󰂓X1 󰂓X2 󰂓X3 󰂓X4

| | | |

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
1 4 7 8
2 2 8 4
1 13 1 5

󰀶

󰀺󰀸 .

The sample mean is

󰂓M =
1
4

󰀳

󰁅󰁃

󰀵

󰀹󰀷
1
2
1

󰀶

󰀺󰀸+

󰀵

󰀹󰀷
4
2

13

󰀶

󰀺󰀸+

󰀵

󰀹󰀷
7
8
1

󰀶

󰀺󰀸+

󰀵

󰀹󰀷
8
4
5

󰀶

󰀺󰀸

󰀴

󰁆󰁄 =
1
4

󰀵

󰀹󰀷
20
16
20

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
5
4
5

󰀶

󰀺󰀸

To write the data in mean-deviation form, we compute,

󰂓X1 = 󰂓X1 − 󰂓M =

󰀵

󰀹󰀷
1
2
1

󰀶

󰀺󰀸−

󰀵

󰀹󰀷
5
4
5

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
−4
−2
−4

󰀶

󰀺󰀸 , 󰂓X2 = 󰂓X2 − 󰂓M =

󰀵

󰀹󰀷
−1
−2
8

󰀶

󰀺󰀸 , 󰂓X3 =

󰀵

󰀹󰀷
2
4
−4

󰀶

󰀺󰀸 , 󰂓X4 =

󰀵

󰀹󰀷
3
0
0

󰀶

󰀺󰀸

which yields that

B =

󰀵

󰀹󰀷
| | | |
󰂓X1 󰂓X2 󰂓X3 󰂓X4

| | | |

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
−4 −1 2 3
−2 −2 4 0
−4 8 −4 0

󰀶

󰀺󰀸 .

Thus, the sample covariance matrix is

S =
1

N − 1
BBT =

1
3

󰀵

󰀹󰀷
−4 −1 2 3
−2 −2 4 0
−4 8 −4 0

󰀶

󰀺󰀸

󰀵

󰀹󰀹󰀹󰀷

−4 −2 −4
−1 −2 8
2 4 −4
3 0 0

󰀶

󰀺󰀺󰀺󰀸
=

1
3

󰀵

󰀹󰀷
30 18 0
18 24 −24
0 −24 96

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
10 6 0
6 8 −8
0 −8 32

󰀶

󰀺󰀸 .

Exercise 30. In the previous example, read off from S the variance of
each of the three variables. Also read off from S the covariance for each
of the three pairs of variables (1 and 2; 1 and 3; 2 and 3).

Definition E.12. The total variance of a dataset is the trace of the
sample covariance matrix.

Example E.13. Continuing the previous example, the total variance
of the data is tr(S) = 10 + 8 + 32 = 50.

E.4 Principal component analysis

The goal in a multivariable linear regression is to explain the total vari-
ance of the dataset using a best linear approximation (e.g., a line or
plane of best fit). However, often most of the input variables are not
needed, as one or two or three of them may explain the vast majority of
the total variance. The goal of this section is to make this precise and
understand which variables explain the most variance.

68 math 2la3 course notes

Convention E.14. Throughout this section, we will assume that the
dataset matrix A is already in mean-deviation form. (That is, its
columns sum to zero.)

First notice that S is symmetric. Indeed,

ST =

󰀕
1

N − 1
AAT

󰀖T
=

1
N − 1

(AT)T AT =
1

N − 1
AAT = S.

The Spectral Theorem (Theorem D.3) thus guarantees that S is orthog-
onally diagonalizable. That is, S = PDPT for some diagonal matrix D
and orthogonal matrix P. Using a similar argument to that given at
the beginning of Section E.1, it follows that the eigenvalues of S are all
nonnegative. So, we may write

P =

󰀵

󰀹󰀷
| | |
󰂓u1 󰂓u2 · · · 󰂓up

| | |

󰀶

󰀺󰀸 and D = diag(λ1, λ2, . . . , λp),

where 󰂓u1, . . . ,󰂓up are orthonormal and λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0.

Definition E.15. The vectors 󰂓u1, . . . ,󰂓up are called the principal com-
ponents of the data (in the matrix of observations).

Specifically, we say that 󰂓u1, the unit eigenvector for the largest eigen-
value, is the first principal component, 󰂓u2 is the second principal
component, and so on.

Denote by 󰂓X a vector of input variables. That is, if are making p
observations for each datapoint, then

󰂓X =

󰀵

󰀹󰀹󰀹󰀹󰀷

x1

x2
...

xp

󰀶

󰀺󰀺󰀺󰀺󰀸
.

Continuing the discussion at the end of the previous section, the vari-
ance of xi is [S]i,i. Similarly, the covariance of xi and xj is [S]i,j.

Our orthogonal matrix P defines a change of coordinates 󰂓X = P󰂓Y
(or equivalently, 󰂓Y = PT󰂓X). It then follows that yi = 󰂓uT

i
󰂓X. Or, if

󰂓uT
i =

󰁫
c1 c2 · · · cp

󰁬
, then

yi =
󰁫
c1 c2 · · · cp

󰁬

󰀵

󰀹󰀹󰀹󰀹󰀷

x1

x2
...

xp

󰀶

󰀺󰀺󰀺󰀺󰀸
= c1x1 + c2x2 + · · ·+ cpxp.

Remark E.16. Because the trace of a matrix is the sum of its eigen-
values, it follows that the total variance of the data satisfies

total variance = tr(S) = tr(D) =
p

∑
i=1

λi.

three applications of singular value decomposition 69

Fact E.17. The variance of yi is λi.

Proof. The variance of yi is the (i, i)-th entry of the sample covariance
matrix in the new coordinate system. This matrix is D, so we have that
[D]i,i = λi. 󰃈

Putting this together, the i-th principal vector 󰂓ui explains λi-much of
the total variance. As a percentage, the vector 󰂓ui explains

λi
total variance

=
λi

∑
p
j=1 λj

of the total variance.

Principal Component Analysis.
Consider a p × N dataset A, written in mean-deviation form.

1. Construct the sample covariance matrix
S =

1
N − 1

(AAT).

2. Orthogonally diagonalize the sample covariance matrix S =

PDPT, where P is orthogonal and D is diagonal and its entries
are nonnegative and listed in decreasing order (largest first).

3. The total variance T is

T = tr(S) = tr(D) =
p

∑
j=1

λj.

4. The columns 󰂓ui of P are the principal component vectors. The
i-th principal component vector 󰂓ui explains λi/T of the total
variance.

Example E.18. Consider a dataset whose covariance matrix is

S =

󰀵

󰀹󰀷
2382.78 2611.84 2136.2
2611.84 3106.47 2553.9
2136.2 2553.9 2650.71

󰀶

󰀺󰀸

which is orthogonally diagonalized as

S = PDPT =

󰀵

󰀹󰀷
0.5417 −0.4894 0.6834
0.6295 −0.3026 −0.7157
0.5570 0.8179 0.1441

󰀶

󰀺󰀸

󰀵

󰀹󰀷
7614.23 0 0

0 427.63 0
0 0 98.1

󰀶

󰀺󰀸

󰀵

󰀹󰀷
0.5417 0.6295 0.5570
−0.4894 −0.3026 0.8179
0.6837 −0.7157 0.1441

󰀶

󰀺󰀸 .

The total variance, the trace of either S or D, is
T = 8139.96.

The first principal component vector (the first column of P) explains
7614.23
8139.96

= 93.5%

of the total variance.

Exercise 31. In the above example, compute the amount of variance
explained by the second and third principal vectors.

70 math 2la3 course notes

E.5 Image compression
A "bit" is the smallest unit of com-
puter storage. Your phone or laptop
might have some number of gigabytes
of storage. Now, there are 8 bits in a
byte (B), 1000 bytes in a kilobyte (KB),
1000 kilobytes in a megabyte (MB),
and 1000 kilobytes in a gigabyte (GB).
So, a phone with 128GB of storage can
store 1,099,511,627,776 bits.

If your phone has 128GB of storage
takes pictures that are approximately
3000 × 4000 pixels (width × height),
then your phone can only store about
10'000 greyscale images—and nothing
else!

This might sound like a lot, but colour
images (naïvely) require three times the
storage (for red, green, and blue), and
videos consist of many images per sec-
ond.

Image compression is just one tech-
nique software developers use to opti-
mize our phones' storage!

Colour images are comprised of pixels, each specifying a value on red,
green, and blue sliders. For simplicity, we will work with greyscale im-
ages, where each pixel is specified by a single number between 0 and 255
corresponding to black (0), white (255), or somewhere in between.

Computers store numbers in binary, also known as base 2. We will need
to store 256 = 28 different greyscale values, so we will need 8 "bits" to
store our greyscale values.

Consider a greyscale image with m × n pixels whose values we store
in a matrix A. Now, compute the reduced singular value decomposition
of A,

A = UrDVT
r =

󰀵

󰀹󰀷
| |
󰂓u1 · · · 󰂓ur

| |

󰀶

󰀺󰀸

󰀵

󰀹󰀷
σ1

σr

󰀶

󰀺󰀸

󰀵

󰀹󰀹󰀷

| 󰂓v T
1 |

...

| 󰂓v T
r |

󰀶

󰀺󰀺󰀸

= σ1󰂓u1󰂓v T
1 + σ2󰂓u2󰂓v T

2 + · · ·+ σr󰂓ur󰂓v T
r .

Because the singular values are listed in decreasing order σ1 ≥ σ2 ≥
· · · ≥ σr > 0, each successive term in the above sum contributes less
and less; we have a diminishing returns effect. So, the best rank k ≤ r
approximation of A is truncating this sum after the first k terms:

A ≈ Ak := σ1󰂓u1󰂓v T
1 + · · ·+ σk󰂓uk󰂓v T

k .

Example E.19. The following is a singular value decomposition A =

UΣVT,

󰀥
3 2 2
2 3 −2

󰀦
=

󰀥
1/

√
2 1/

√
2

1/
√

2 −1/
√

2

󰀦 󰀥
5 0 0
0 3 0

󰀦 󰀵

󰀹󰀷
1/

√
2 1/

√
2 0

1/3
√

2 −1/3
√

2 4/3
√

2

−2/3 2/3 1/3

󰀶

󰀺󰀸 .

Notice that rank(A) = 2. The best rank 1 approximation to A is:

A1 = σ1󰂓u1󰂓v T
1 = 5

󰀥
1/

√
2

1/
√

2

󰀦 󰁫
1/

√
2 1/

√
2 0

󰁬

= 5

󰀥
1/2 1/2 0
1/2 1/2 0

󰀦
=

󰀥
5/2 5/2 0
5/2 5/2 0

󰀦
.

Recall that the storage required for an uncompressed image is b · mn
bits, where m and n are the width and height (in pixels) and b is the
number of bits per pixel. This image corresponds to an m × n matrix
A. The best rank k approximation of A consists of the following data:

three applications of singular value decomposition 71

• k singular values,
• k vectors 󰂓u1, . . . ,󰂓uk in Rm,
• k vectors 󰂓v1, . . . ,󰂓vk in Rn,

which requires the following storage:
b(k + km + kn) = b · k(1 + m + n) bits,

where again b is the number of bits per pixel.

Definition E.20. The compression ratio is the ratio of original pixels
to compressed pixels,

b · mn
b · k(1 + m + n)

=
mn

k(1 + m + n)
.

Exercise 32. (a) Compute the compression ratio from Example E.19.
(b) Also, compute the compression ratio of an arbitrary 4032 × 3024

image.3 (Your answer will depend on k). 3 This is the size of the most recent im-
age on the instructor's phone. (A pic-
ture of some math on a blackboard.)

F
Markov Chains

Historical sidenote. Andrey
Markov began the study of what we
now know as "Markov chains" in the
early 1900s. One of his original applica-
tions was applying this theory to under-
stand the poetry of Alexander Pushkin
by looking at patterns of vowels and
consonants.

Today, Markov chains are similar to
how generative AI tools, like ChatGPT,
generate text. Given a prompt and the
words it has already written, ChatGPT
produces the word most likely to come
next through a Markov process.

Markov chains model systems with a finite number of states given prob-
abilities of moving between each state. For instance, suppose we group
a population into those who live in cities versus suburbs. Let's say that
at start time t = 0, we have the following initial populations,

c0 = 600′000, (cities)
s0 = 400′000. (suburbs)

Also, assume that every year on average, 5% of those in cities move to
suburbs and the remaining 95% remain in the city. Meanwhile, every
year 3% of those in suburbs move to cities and the remaining 97% remain
in the suburbs. We can equivalently write these probabilities in the
following diagram.

cities suburbs0.95 0.97

0.05

0.03

The populations after 1 year are given by
󰀻
󰀿

󰀽
c1 = 0.95c0 + 0.03s0

s1 = 0.05c0 + 0.97s0
⇐⇒

󰀥
c1

s1

󰀦
=

󰀥
0.95 0.03
0.05 0.97

󰀦 󰀥
c0

s0

󰀦

󰀥
c1

s1

󰀦
=

󰀥
0.95 0.03
0.05 0.97

󰀦 󰀥
600′000
400′000

󰀦
=

󰀥
582′000
418′000

󰀦

Denote by There is a slight notational difference
here and what we did, say, for dynam-
ical systems. For dynamical systems,
we used 󰂓p(t) to denote population af-
ter time t, while here we are using 󰂓pt.
The difference is that for dynamical
systems, our models were continuous
functions, so we could take about frac-
tions of units time. While here, we are
iterating matrix multiplication so the
time units are discrete.

󰂓pt =

󰀥
ct

st

󰀦

the vector of populations in the cities and suburbs after t years. That is,
󰂓pt = M󰂓pt−1, where M is the above 2× 2 matrix of probabilities. Notice
that

󰂓p2 = M󰂓p1 = M(M󰂓p0) = M2󰂓p0

74 math 2la3 course notes

and
󰂓p3 = M(󰂓p2) = M(M2󰂓p0) = M3󰂓p0.

This pattern continues, so it follows that
󰂓pt = Mt󰂓p0.

So to find, say, 󰂓p100, rather than having to compute each of 󰂓p1, . . . ,󰂓p100,
we can compute M100 instead, which, in some cases, can be less compu-
tationally intensive.

The main question we will answer is the following.

Question F.1. What is the long-term behaviour of a Markov chain?
Do we converge to some limit vector?

F.1 Stochastic matrices and long-term behaviour

The following definition should look familiar from the columns of M in
the introduction of this chapter.

Definition F.2. A probability vector is a vector with nonnegative
entries which sum to 1. A stochastic matrix is a square matrix whose
columns are probability vectors.

Example F.3. The columns of M in the introduction,󰀥
0.95
0.05

󰀦
,

󰀥
0.03
0.97

󰀦

have nonnegative entries. Moreover, the sum of each's entries is 1, so
these are both probability vectors. As a result, M is a stochastic matrix.

On the other hand, the population vector󰀥
600′000
400′000

󰀦

is clearly not a probability vector. However, if we replace each popula-
tion with its corresponding percentage of the total population,1we get 1 That is, the total population is

1′000′000. So we replace 600′000 with
600′000/1′000′000 = 0.6 and similarly,
400′000 becomes 0.4.

the vector 󰀥
0.6
0.4

󰀦
,

which is a probability vector.

Recall that Question F.1 asks to describe the long-term behaviour.
In particular, we want to know about the existence of a vector of the
following type.

Definition F.4. Let M be a stochastic matrix. An equilibrium vec-
tor of M is a probability vector 󰂓q for which M󰂓q = 󰂓q.

We make the following two observations.

markov chains 75

• Such a vector 󰂓q is a state vector 󰂓pt for which 󰂓pt+1 = M󰂓pt. In such a
case, 󰂓pt = 󰂓pT for all time T later than t (that is, T ≥ t). If we reach
such a vector, then after every unit time, the state vector does not
change.

• Equilibrium vectors󰂓q, by definition, satisfy M󰂓q = 󰂓q. That is, they are
probability vectors that are also eigenvectors of M with corresponding
eigenvalue 1.

The following theorem guarantees that any stochastic matrix has a
corresponding equilibrium vector.

Theorem F.5. Every stochastic matrix has 1 as an eigenvalue. Equiv-
alently, every stochastic matrix has an equilibrium vector.

Proof in the 3 × 3 case. We will make use of the fact that a matrix M
and its transpose MT have the same eigenvalues. To see this, notice that
it is enough to argue that they have the same characteristic polynomial.
Using properties of transpose,

(M − λI)T = MT − (λI)T = MT − λI,

because λI is diagonal. Then because the determinant does not change
under taking transposes, we have that

det(M − λI) = det
󰀓
(M − λI)T

󰀔
= det(MT − λI).

Now let M be a 3 × 3 stochastic matrix, writing

M =

󰀵

󰀹󰀷
a b c
d e f
g h k

󰀶

󰀺󰀸 .

Because M is stochastic, its columns sum to 1. Consequently, the rows
of MT sum to 1,

MT =

󰀵

󰀹󰀷
a d g
b e h
c f k

󰀶

󰀺󰀸 .

It then follows that

MT

󰀵

󰀹󰀷
1
1
1

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
a d g
b e h
c f k

󰀶

󰀺󰀸

󰀵

󰀹󰀷
1
1
1

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
a + d + g
b + e + h
c + f + k

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
1
1
1

󰀶

󰀺󰀸

so 1 is an eigenvalue of MT and thus is also an eigenvalue of M. We
conclude that M has an equilibrium vector. 󰃈

Example F.6. We will find a steady state vector for the stochastic
matrix

M =

󰀥
0.6 0.3
0.4 0.7

󰀦
.

76 math 2la3 course notes

We are required to find an eigenvector of M corresponding to the eigen-
value 1, whose entries sum to 1. First, the eigenvectors of M are the
solutions to (M − I)󰂓x =󰂓0. That is, they are the solutions to the system

󰀥
−0.4 0.3 0
0.4 −0.3 0

󰀦
∼

󰀥
4/10 −3/10 0

0 0 0

󰀦
∼

󰀥
1 −3/4 0
0 0 0

󰀦
.

So eigenvectors of M are of the form (x, y) = (3y/4, y), or equivalently,
the scalar multiples of (3/4, 1) or (3, 4). Such a vector, whose entries
sum to 1 is (3/7, 4/7).

You can check that 󰂓q = (3/7, 4/7) is an equilibrium vector by checking
its entries sum to 1 and that 󰂓q = M󰂓q.

Finding equilibrium vectors of stochastic matrices. Let
M be a stochastic matrix.

1. Find an eigenvector 󰂓v of M corresponding to the eigenvalues
1, such that 󰂓v has nonnegative entries.

2. An equilibrium vector 󰂓q is given by dividing 󰂓v by the sum of
the entries of 󰂓v.

This theorem guarantees the existence of an equilibrium vector but
this need not be the unique equilibrium vector. In some cases, this
equilibrium vector is unique.

Definition F.7. A stochastic matrix M is regular if there is some
positive integer k for which Mk contains only strictly positive entries.

Stochastic matrices have nonnegative entries, some of which could be
zero. Every regular matrix is a stochastic matrix, but the reverse is not
true.

Example F.8. The following matrix M is a regular matrix.

M =

󰀵

󰀹󰀷
0.5 0.2 0.3
0.3 0.8 0.3
0.2 0 0.4

󰀶

󰀺󰀸

It is regular because M2 contains only positive entries.

M2 =

󰀵

󰀹󰀷
0.37 0.26 0.33
0.45 0.7 0.45
0.18 0.04 0.22

󰀶

󰀺󰀸

Theorem F.9. If M is a regular matrix, then it has a unique equilibrium
vector 󰂓q. Moreover, given any initial probability vector 󰂓x0,

lim
t→∞

󰂓xt = lim
t→∞

Mt󰂓x0 = 󰂓q.

markov chains 77

F.2 PageRank

In this section, we will discuss how to use Markov chains to answer the
following question.

Question F.10. How does one rank all the webpages on the internet?

Our answer comes in the form of Google's original approach, which
originated as a school project in 1996. Developed by Google co-founders
Sergey Brin and Larry Page, graduate students at Stanford University,
PageRank orders webpages by the number of links to this webpage from
other sites.

Consider a toy model with only six webpages. In the following figure,
an arrow from one webpage to another denotes a link from the source
webpage that points to the target.

w1

w2 w3 w4

w5 w6

w7

This gives rise to a Markov chain in the following way. Suppose we
start at webpage w3. This webpage has links to w2, w4, and w6, so
we choose between these webpages with equal probability and move to
the chosen page. We then repeat ad nauseam. There is an underlying
stochastic matrix here, Notice that w4 and w7 do not link to

any webpages, so if we end up on either
of these pages, we cannot leave! In M,
we see this as the fourth and seventh
columns having only one nonzero entry.

M =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0 1/2 0 0 0 0 0
0 0 1/3 0 1/2 0 0
1 0 0 0 0 1/3 0
0 0 1/3 1 0 0 0
0 1/2 0 0 0 1/3 0
0 0 1/3 0 1/2 0 0
0 0 0 0 0 1/3 1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

.

Given any starting probability vector 󰂓x0, we have a Markov chain
in the sequence 󰂓x0, M󰂓x0, . . . , Mt󰂓x0, . . ., which models the probabilities
of being on any given webpage after time t. We then rank the pages

78 math 2la3 course notes

using the equilibrium vector: the page with the greatest probability is
the highest rank webpage; the page with the lowest probability receives
the lowest rank.

However, M is not a regular matrix, so there is not a unique equi-
librium vector. We make the following two adjustments: one to fix the
issue of landing on pages which do not link to other pages, and one to
fix this irregularity issue.

(i) If we land on a page that does not link to any other pages, move
to any page with uniform probability. That is, we replace the 4th

and 7th columns in M with the vectors (1/7, . . . , 1/7). The 7 in the
denominator is the same as the total number of webpages in our
model. So now, M is the following matrix.

M =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0 1/2 0 1/7 0 0 1/7

0 0 1/3 1/7 1/2 0 1/7

1 0 0 1/7 0 1/3 1/7

0 0 1/3 1/7 0 0 1/7

0 1/2 0 1/7 0 1/3 1/7

0 0 1/3 1/7 1/2 0 1/7

0 0 0 1/7 0 1/3 1/7

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

.

(ii) Pick some probability p. That is, p is a real number satisfying
0 < p < 1. At every step, we will move with probability p from
the current webpage to one linked from the current page. With
probability 1 − p, we will instead move to a random webpage,
picked uniformly.

Definition F.11. The Google matrix is the matrix constructed in
this way after making a choice of p.

Example F.12. Let p = 0.85. Then the Google matrix for the above
example is

G = pM + (1 − p) ·
󰀕

1
7

1
󰀖

,

where 1 is the 7× 7 matrix with a 1 in every entry. Explicitly, and using
the fact that 0.85 = 17/20, we have that

G =
17
20

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0 1/2 0 1/7 0 0 1/7

0 0 1/3 1/7 1/2 0 1/7

1 0 0 1/7 0 1/3 1/7

0 0 1/3 1/7 0 0 1/7

0 1/2 0 1/7 0 1/3 1/7

0 0 1/3 1/7 1/2 0 1/7

0 0 0 1/7 0 1/3 1/7

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

+
3
20

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1/7 1/7 1/7 1/7 1/7 1/7 1/7

1/7 1/7 1/7 1/7 1/7 1/7 1/7

1/7 1/7 1/7 1/7 1/7 1/7 1/7

1/7 1/7 1/7 1/7 1/7 1/7 1/7

1/7 1/7 1/7 1/7 1/7 1/7 1/7

1/7 1/7 1/7 1/7 1/7 1/7 1/7

1/7 1/7 1/7 1/7 1/7 1/7 1/7

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

markov chains 79

=

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0 17/40 0 17/140 0 0 17/140

0 0 17/60 17/140 17/40 0 17/140

17/20 0 0 17/140 0 17/60 17/140

0 0 17/60 17/140 0 0 17/140

0 17/40 0 17/140 0 17/60 17/140

0 0 17/60 17/140 17/40 0 17/140

0 0 0 17/140 0 17/60 17/140

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

+

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

3/140 3/140 3/140 3/140 3/140 3/140 3/140

3/140 3/140 3/140 3/140 3/140 3/140 3/140

3/140 3/140 3/140 3/140 3/140 3/140 3/140

3/140 3/140 3/140 3/140 3/140 3/140 3/140

3/140 3/140 3/140 3/140 3/140 3/140 3/140

3/140 3/140 3/140 3/140 3/140 3/140 3/140

3/140 3/140 3/140 3/140 3/140 3/140 3/140

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

=

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

3/140 25/56 3/140 1/7 3/140 3/140 1/7

3/140 3/140 32/105 1/7 25/56 3/140 1/7

61/70 3/140 3/140 1/7 3/140 32/105 1/7

3/140 3/140 32/105 1/7 3/140 3/140 1/7

3/140 25/56 3/140 1/7 3/140 32/105 1/7

3/140 3/140 32/105 1/7 25/56 3/140 1/7

3/140 3/140 3/140 1/7 3/140 32/105 1/7

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

.

You can verify that this is a regular matrix (that is, because its entries
are all strictly positive, you need only see that every column sums to 1).

We can then find an equilibrium vector. Using your favourite symbolic
calculator2, you can find that the eigenvectors must satisfy the system 2 Actually, some symbolic calculators

(including WolframAlpha) refuse to do
this computation. However you can
find one that does. I used Macaulay2.
You should use something else.

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1 0 0 0 0 0 −193′640/153′877 0
0 1 0 0 0 0 −280′680/153′877 0
0 0 1 0 0 0 −318′471/153′877 0
0 0 0 1 0 0 −3′291′689/3′077′540

0 0 0 0 1 0 −273′166/153′877 0
0 0 0 0 0 1 −280′680/153′877 0
0 0 0 0 0 0 0 0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

,

or equivalently, are of the form

t

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

193′640/153′877

280′680/153′877

318′471/153′877

3′291′689/3′077′540

273′166/153′877

280′680/153′877

1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

for any t ∈ R. Choosing t = 3′077′540 yields the eigenvector
󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

3′872′800
5′613′600
6′369′420
3′291′689
5′463′320
5′613′600
3′077′540

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

,

https://macaulay2.com

80 math 2la3 course notes

from which we find the equilibrium vector by dividing by the sum of its
entries:

󰂓q =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

3′872′800/33′301′969

5′613′600/33′301′969

6′369′400/33′301′969

3′291′689/33′301′969

5′463′320/33′301′969

5′613′600/33′301′969

3′077′540/33′301′969

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

≈

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0.11629
0.16857
0.19126
0.09884
0.16405
0.16857
0.09241

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

.

So the ranking of the webpages is:

1. w3

2. tied between w2 and w6

4. w5

5. w1

6. w4

7. w7.

